
Divide-and-query and subterm dependency tracking

in the Mercury declarative debugger

Ian MacLarty, Zoltan Somogyi and Mark Brown

University of Melbourne

1



Declarative debugging

• Program execution represented by tree.

• Each node in the tree corresponds to a procedure/function

call in the program.

• The children of each node are the child calls to procedures

in the body of the parent procedure.

• Bug = correct children + erroneous parent.

• Eliminate subtrees based on knowledge gained from the user.
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Advantages

• Upper bound on effort of finding a bug.

• Much less to remember.

• Debugger directs bugs search.
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Not widely used

• Only works well for purely declarative programs.

• Did not previously scale to large search spaces.

• Questions may be difficult to answer.
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Mercury procedural debugger

• Declarative debugger built on top of procedural debugger.

• Interface events at entry and exit from calls.

Each node in tree corresponds to an exit event.

• Internal events at decision points which affect control flow

(e.g. if-then-elses etc).

• Each event is assigned an event number.
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Building the tree

• Generate the tree piece by piece on demand.

• We rerun a call if we need to generate nodes below that call.
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Search strategies
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Divide and query

• We pick a node for each question which divides the tree into

two roughly equal portions.

• Results in O(log n) questions on average.

• Query optimal in the absence of other information.
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Divide and query example

area(circle(Radius)) = Radius * pi. % should be sqr(Radius) * pi
area(box(Width, Height)) = Width * Height.

areas([]) = [].
areas([Shape | Shapes]) = [area(Shape) | areas(Shapes)].

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].
Valid? no
areas([circle(2), box(3, 4)]) = [6.28, 12].
Valid? no
areas([box(3, 4)]) = [12].
Valid? yes
area(circle(2)) = 6.28.
Valid? no
Found bug:
area(circle(2)) = 6.28
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Efficient divide and query

• Only feasible if the debugger can know the size of subtrees

without having to materialize them first.

• Use difference in event numbers at call and exit events to

estimate the weight of a subtree.
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Subtree weights for divide and query
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11



Tracking the origin of a subterm

• The user often has more information to give than simply

“erroneous” or “correct”.

• If a call is erroneous there is often a small part of one of the

arguments which is incorrect.

• If the user indicates that a subterm of an argument is incor-

rect the declarative debugger will ask about the call which

created the subterm.
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Subterm dependency tracking example

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].
Valid? browse return
browser> cd 2/2/1
browser> print
6.28
browser> mark
area(circle(2)) = 6.28
Valid? no
Found bug:
area(circle(2)) = 6.28

Decreases question sizes and number of questions.
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Subterm dependency tracking algorithm

We store a representation of the procedure body in the generated

executable.

Algorithm has two parts:

• Tracking subterm within procedure body

Use representation of procedure body and internal events.

• Tracking subterm between procedure calls

Keep track of path to subterm and argument in which sub-

term appears.
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Subterm tracking example

areas([box(2, 3), box(4, 5), circle(2), box(3, 4)]) = [6, 20, 6.28, 12].

areas([box(4, 5), circle(2), box(3, 4)]) = [20, 6.28, 12].

areas([circle(2), box(3, 4)]) = [6.28, 12].

area(circle(2)) = 6.28

[2, 2, 1]

[2, 1]

[1]

[ ]

area(box(2, 3)) = 6.

area(box(4, 5)) = 20.

areas([box(3, 4)]) = [12].

area(box(3, 4)) = 12.
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Differences from other approaches

• Require no additional information besides procedure bodies.

No time overhead when not used. Space cost is acceptable.

• Allow sub-values to be marked.

• Proceed directly to the call which created the marked sub-

term instead of eliminating calls not on the slice.
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Experiences

We have used the declarative debugger to find several real bugs

in the Mercury compiler and the declarative debugger itself.
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Future work

• Using information from passing and failing test cases to guide

search.

• Using CVS/RCS/Subversion diffs.
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Latest version available at www.cs.mu.oz.au/mercury.

Questions?
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