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Abstract. Many programmers find debugging a frustrating and unproductive activity.
Declarative debugging [6, 10] promises to alleviate this problem by automating some of the
reasoning used in the debugging process. We have implemented a declarative debugger for
Mercury [5]. In the process, we found a problem not addressed in the existing literature on
declarative debuggers, which considers programs to consist of clauses (conjunctions of liter-
als): how to handle if-then-elses. The problem is that the condition of an if-then-else should
be treated as a negated goal if and only if the condition fails. Negated contexts may cause a
declarative debugger to switch from wrong answer analysis to missing answer analysis and
vice versa. Since missing answer analysis explores a search space that is subtly different
from the space explored for wrong answer analysis, the two kinds of analysis need different
kinds of trees to represent the program execution. For the conditions of if-then-elses, the
debugger does not know which kind of tree to build until the condition has either succeeded
or failed, by which time it is too late. To solve this problem, we have designed a novel data
structure, the annotated event trace, which is flexible enough to support both wrong and
missing answer analysis. The advantages of this data structure are that it is quite compact,
requiring little more space than an ordinary stored event trace, and that the algorithms to
build this data structure and to derive from it the information required for two kinds of
diagnosis are all simple as well as efficient.

1 Introduction

Logic programming languages have both a declarative semantics and an operational semantics. The
declarative semantics views the program as a set of logical statements whose logical consequences
give the meaning of the program, while the procedural semantics views the program as a sequence
of instructions to be executed by the machine. The declarative semantics is higher level and closer
to the way that programmers think than the operational semantics. Ideally, programmers should
be able to work entirely with the declarative semantics. Unfortunately, this is not possible with
most logic programming language implementations, because the only available debugger works at
the operational level.

Until recently, this was also true for Mercury; the first Mercury debugger [11] is a procedural
debugger for the Melbourne Mercury implementation. However, we have now built a prototype
declarative debugger for Mercury. Declarative debuggers operate at the level of the declarative
semantics; they work by asking an oracle (usually the programmer) questions about the intended
meaning of the various parts of the program, and comparing this to their behaviour [6,10]. By
tracking inconsistencies between behaviour and intended meaning, such debuggers can locate a
point in the program in which the correct results of zero or more subcomputations are combined
into an incorrect result. This point is the precise location of a bug in the program source. This
technique requires the procedural semantics to be a faithful reflection of the declarative semantics,
which means that is only applicable to pure logic programs: to Prolog programs written in Prolog’s
small pure subset, and to programs written in pure logic programming languages such as Mercury.

The Melbourne Mercury implementation supports declarative diagnosis from within the proce-
dural debugger. Both debuggers view the execution of a program as a sequence or trace of events;



when debugging is enabled, the compiler generates code that gives the runtime system control at
each event. The runtime system can then interact with the programmer, allowing the programmer
to inspect the state of the computation and to issue commands. Some of these commands tell
the debugger to give control back to the program being debugged, and to interact with the pro-
grammer again only at a future event that matches a specified condition. One possible condition
is “until the current call has either produced a solution or has failed”. If the computed answer is
wrong, the programmer can issue a command to invoke the declarative debugger to diagnose the
wrong answer; if the call has failed without producing an expected answer, the programmer can
issue a command to invoke the declarative debugger to diagnose the missing answer.

Wrong answer analysis differs significantly from missing answer analysis. The input to wrong
answer analysis is a predicate and all its arguments, both input and output, while the input
to missing answer analysis is a predicate and just its input arguments. One can start wrong
answer analysis as soon as the wrong answer has been computed, while one cannot start missing
answer analysis until all answers to the call in question have been computed. When performing
wrong answer analysis, the declarative debugger can restrict its attention to the path through
the predicate body that execution took in order to produce the wrong answer; when performing
missing answer analysis, no such restriction is possible. Although both forms of analysis explore
a tree whose nodes are related to calls of the program, and in which a parent/child relationship
between two nodes implies a caller/callee relationship between the associated calls, the trees they
want to explore are different because the criteria they want to use to select the children of the
node associated with a call are different.

A declarative debugger for a logic programming language that permitted only definite clauses
could simply build whichever kind of tree was required by the kind of error the diagnoser was
asked to debug. A declarative debugger for a logic programming language that also permits normal
clauses cannot do that, because negated contexts require the diagnosis algorithm to switch from
wrong answer analysis to missing answer analysis and vice versa (this observation was attributed
to McCabe in [10, p. 74]). Such a debugger could instead build a single tree with two kinds of
nodes. Wrong answer nodes would include as their children only the nodes of the calls along the
computation path towards a specific wrong answer of a given predicate invocation, while missing
answer nodes would include as their children the nodes of all the calls made by the given predicate
invocation.

Unfortunately, even this more complicated approach poses problems for logic programming
languages that support if-then-elses as well as simple negated atoms. In Mercury and in Prolog di-
alects with a sound implementation of if-then-else (e.g. NU-Prolog [12]), (Cond -> Then ; Else)
has the same declarative semantics as ((Cond, Then) ; (-3 Cond, Else)), which means that
Cond is in a negated context if and only if it has no solutions. However, operationally, execu-
tion enters Cond only once. Until Cond either succeeds or fails, the implementation cannot know
whether the calls inside Cond are in a negated context or not, and therefore what kind of tree to
build for the calls in Cond. One may imagine that this problem could be avoided by transforming
if-then-elses into their equivalent form before debugging; this would mean that both kinds of tree
would effectively be built. While this solution could work for Prolog dialects, it does not work in
Mercury because the transformed if-then-elses generally are not mode correct, therefore cannot be
executed by the Mercury system.

In the Mercury debugger, we have solved this problem by not materializing either kind of tree
at all; what we build instead is an annotated trace. When the programmer initiates declarative
debugging, the declarative debugger will reexecute the goal in question, but this time in a mode
in which the runtime system builds a list which has one node for each event occurring inside the
execution of the goal. During its construction, the runtime system annotates this list by linking
the nodes of semantically related nodes together with a carefully selected set of extra arcs. Since
different kinds of events have different sets of extra arcs, the resulting data structure looks like
an irregular kind of skip list. The extra arcs require relatively little extra space, and adding them
requires little extra time, so the annotated trace is almost as cheap to build as a simple list of
events would be. Nevertheless, the annotated trace is flexible enough to support both wrong answer
and missing diagnosis on all the subgoals within the erroneous computation, because the skip links



allow the diagnosis algorithm to locate the children of a given node, of either kind, quickly and
efficiently. The diagnosis algorithm never fully materializes any kind of tree; it constructs just the
portions of interest to it, on demand.

The rest of this paper is organized as follows. Section 2 introduces the ideas of events and event
traces, as well as our running example. Section 3 defines the concepts on which the annotated
trace is based: the concepts of contexts, strata and contours. Section 4 describes the structure of
the annotated trace and gives the algorithm that the Mercury runtime system uses to build the
annotated trace. Section 5 describes how the error diagnosis algorithm extracts the information it
needs from the annotated trace. Section 6 shows how we handle some of the practical issues that
arise in the implementation of our scheme. Section 7 presents our conclusions and lists areas for
future work.

This paper assumes familiarity with the basic concepts of Mercury, including types, modes and
determinisms; these are described in detail in the Mercury language reference manual [5]. It also
assumes familiarity with the basic concepts of declarative debugging.

2 Event traces

The Mercury debuggers view the execution of a program as a sequence or trace of events; when
debugging is enabled, the compiler generates code that gives the runtime system control at each
event. The mechanisms involved in doing this are described in [11].

Events can be classified into two categories, interface events and internal events. Interface
events describe the interaction between one invocation of a procedure (one mode of a predicate)
and its caller, while internal events describe the flow of control inside the call. The four types of
interface events supported by the declarative debugger correspond to the four ports in Byrd’s box
model [1]:

call A call event occurs just after a procedure has been called, and control has just reached the
start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and control is about to return
to its caller.

redo A redo event occurs when all computations to the right of a procedure call have failed, and
control is about to return to this call to try to find alternative solutions.

fail A fail event occurs when a procedure call has run out of alternatives, and control is about
to return to the rightmost computation to its left that has remaining alternatives which
could lead to success.

The procedural debugger also supports a fifth type of interface event, the exception event, which
occurs when control leaves a procedure and returns to its caller due to an uncaught exception.
The declarative debugger is not yet able to analyze computations that raise exceptions; that is
future work.

There are eight kinds of internal events. Their purpose is to record the outcomes of decisions
about the flow of control, and to mark the boundaries of (possibly) negated contexts. The second
kind were added specifically to support the declarative debugger.

cond A cond event occurs when execution reaches the start of the condition of an if-then-else.

then A then event occurs when the condition of an if-then-else succeeds, and execution reaches
the start of the then part.

else An else occurs when the condition of an if-then-else fails, and execution reaches the start
of the else part.

nege A negation enter event occurs when execution reaches the start of a negated goal.

negf A negation failure event occurs when a negated goal succeeds, which means that the nega-
tion failed.

negs A negation success event occurs when a negated goal fails, which means that the negation
succeeded.

disj A disj event occurs when execution reaches the start of a disjunct in a disjunction.



swtc A switch event occurs when execution reaches the start of one arm of a switch (a switch is a
disjunction in which each disjunct unifies a bound variable with different function symbol).

At each event, the debugger has access to several kinds of information about the event. The
event number uniquely identifies the event, and the call number uniquely identifies a specific
invocation of a procedure. The event depth gives the number of ancestors linking the call to the
initial invocation of main. The debugger of course knows the identity of the procedure within
which the event occurs (the name of the predicate or function, its arity, its mode number, etc),
and the list of the variables that are live at the time of the event, including not only their names
but also their types and storage locations.

At each internal event, the debugger also has access to the goal path, which gives the identity
of the subgoal associated with the event. For most kinds of internal events, the goal identifies the
goal that execution is about to enter when the event occurs, the exceptions being negf and negs
events, for which it identifies the goal that execution has just left when the event occurs. If we view
the body of a procedure as a term consisting of primitive goals (unifications and calls) combined
with various connectives (conjunction, disjunction, if-then-else, etc), then a goal path is a sequence
of components, with each component giving one step from the root of the term to the subterm
that represents a goal (which may be primitive or compound). The goal path uniquely identifies
this goal. For example the goal path “s2;c2;d1” states that the procedure body is a switch whose
second arm is a conjunction in which the second conjunct is a disjunction, and denotes the first
disjunct of this disjunction. An internal event which has this goal path associated with it must be
a disj event, since its occurrence means that execution is about to enter this disjunct. Goal paths
may also include components “?;”, “t;” and “e;” for conditions, then branches and else branches,
respectively, and “~;” for negations.

We will use the program fragment in figure ?? as our running example in the rest of the paper.
We assume that the main predicate starts with an if-then-else whose condition is the conjunction
pCa’, X), test(X), where test(X) fails immediately. Then executing the program produces a
sequence of events (an event trace) of which the trace in figure 1 is the initial portion.

This example illustrates several aspects of event traces. First, the set of events for a given
procedure call is not necessarily in a contiguous block, but may be interspersed with events from
other calls, from outside as well as inside the call-tree of the call concerned. For example, the
events of p (call #2) are interspersed with the events of the calls to test (calls #5 and #6) as
well as e.g. the calls to r (#4 and #8). Second, it is possible for a given procedure invocation to
generate disj events whose goal paths refer to different disjuncts of the same disjunction; we call
such events parallel events (e.g. events #6 and #25). On the other hand, then and else events
are not parallel; one cannot get them both for any given entry into the condition (the condition
may be entered several times if the code before the condition has more than one solution). Switch
events for different arms of the same switch are not parallel either. Third, the sequence of interface
events that may occur for call depends on the determinism of the called procedure. The possible
sequences of interface events for procedures of the various determinisms are as follows.

nondet: a call event, zero or more repeats of (exit event, redo event), and a fail event
multi: a call event, one or more repeats of (exit event, redo event), and a fail event
semidet: a call event, and either an exit event or a fail event

ccnondet:  a call event, and either an exit event or a fail event

det: a call event and an exit event

cc_multi: a call event and an exit event

failure: a call event and a fail event

erroneous:  a call event only (followed by an infinite loop or a runtime abort)

3 Contexts, strata and contours

The full trace contains all the information that the declarative debugger may ever need. However,
not all of it is needed all the time. At any point in time, the debugger needs information only from



:— pred p(character::in, int::out) is nondet.

p(A, D) :-
q(A, B),
(
r(B, C)
->

).

:— pred q(character::in, character::out) is nondet.

q()aj, )a;)_
q()aj, ’b’).
q()cj, ’C’).

:— pred r(character::in, int::out) is semidet.
r(’a’, 10).
:— pred s(int::in, int::out) is det.

s(N, 3 * N).

small subsets of the full trace, although of course in different circumstances, it requires different
subsets. In this subsection, we define several concepts that correspond to such subsets. These
concepts are the foundation on which the annotated trace is built.

We define the events inside the call identified by call number ¢ to consist of the events generated
by call ¢ and the events generated by the calls that are the direct and indirect descendants of call c.
This concept is useful because a bug exhibited by call ¢ cannot be caused by any event outside
call ¢, so when diagnosing such a bug, the debugger can restrict its attention to the events inside c.
In our example, the events inside call #2, the only call to p, consist of the events generated by
calls #2-5 and #7-9, while the events inside call #3, the first call to q, consist only of the events
generated by call #3.

When the debugger is looking for a bug in call ¢, not all the events inside call ¢ are needed at
once. The ones which are of immediate concern are the body events of ¢, which consist of

— the internal events of call ¢, and
— the interface events of the children of call c.

These events represent the execution of (all or part of) the bodies of the clauses defining the
predicate called by call ¢. Note that although the interface events of ¢ are “inside” ¢, they are not
counted as “body events”.

In a set of body events, the internal events relating to negated contexts come in pairs: nege—
negs, nege-negf, and cond—else. (There are also cond events which are matched not by an else



Event # Call # Depth Type Procedure Atom Path

1: 1 1 call main/2-0

2: 1 1 cond main/2-0 %

3: 2 2 call p/2-0 p(a’, )

4: 3 3 call q/2-0 qa(Ca’, )

5: 3 3 swtc q/2-0 s1;

6: 3 3 disj q/2-0 s1;d1;
7: 3 3 exit q/2-0 q(’a’, ’a’)

8: 2 2 cond p/2-0 c2;7;
9: 4 3 call r/2-0 r(a), o)

10: 4 3 exit r/2-0 r(’a’, 10)

11: 2 2 then p/2-0 c2;t;
12: 2 2 disj p/2-0 c2;t;d1;
13: 5 3 call s/2-0 s(10, .)

14: 5 3 exit s/2-0 s(10, 30)

15: 2 2 exit p/2-0 p(a’, 30)

16: 6 2 call test/2-0 test(30)

17: 6 2 fail test/2-0

18: 2 2 redo p/2-0

19: 2 2 disj p/2-0 c2;t;d2;
20: 2 2 exit p/2-0 p(’a’, 31)

21: 7 2 call test/2-0 test(31)

22: 7 2 fail  test/2-0

23: 2 2 redo p/2-0

24: 3 3 redo q/2-0

25: 3 3 disj q/2-0 s1;d2;
26: 3 3 exit q/2-0 qC’a’, 'b’)

27: 2 2 cond p/2-0 c2;7;
28: 8 3 call r/2-0 r(’b’, )

29: 8 3 fail r/2-0

30: 2 2 else p/2-0 c2;e;
31: 2 2 nege p/2-0 c2;e;cl;™;
32: 9 3 call q/2-0 a(’b’, o)

33: 9 3 fail q/2-0

34: 2 2 negs p/2-0 c2;e;cl;”;
35: 2 2 exit p/2-0 p(’a’, 32)

36: 10 2 call test/2-0 test(32)

37 10 2 fail test/2-0

38: 2 2 redo p/2-0

39: 3 3 redo q/2-0

40: 3 3 fail q/2-0

41: 2 2 fail p/2-0

Fig. 1. Event trace

events but by one or more then events. These cond events are not related to negated contexts
because the condition of the if-then-else has not failed.) These pairs divide the body events of calls
into segments. We will say that a subsequence of the body events of a call is a negated context
if the subsequence includes all the body events of the call chronologically between such a pair of
delimiter or anchor events, but not the anchor events themselves.

We define a context to be either a negated context or a segment of body events for some call
¢ which is delimited by the call event of call ¢ and either an exit event or a fail event of call
c. Contexts can have other contexts nested inside them, where the nesting site is a pair of events
anchoring a negated context (the anchor events are considered part of the outer context only).
This nesting is somewhat simpler than the nesting of one procedure call inside another: while



execution can leave a call and then later backtrack into it, execution can never backtrack into a
negated context. (In Mercury, negated goals cannot bind non-local variables, and therefore cannot
succeed more than once.)

We define a stratum to be the set C'— J,c;, where C' is the set of events from some context,
and the ¢; are the sets of events from contexts nested in C. A stratum clusters together events for
goals which have been negated by the same set of constructs in the procedure. This set may of
course be the empty set. All strata are anchored at the end by an event of type exit, fail, else,
negs or negf. Conversely, events of these types always have a matching call, cond or nege event
respectively earlier in the same body, so each such event anchors the end of a (unique, possibly
empty) stratum. We can therefore identify a stratum by the event which anchors it at the end.

The body events of a call are important because they tell us how the results from its children
were put together to derive the call’s result. However, due to the presence of negation, the diagnosis
algorithm may treat different body events differently. The reason why it is useful to consider just
the events in a single stratum is that the events of a single stratum are treated uniformly.

The two events anchoring a stratum define a goal. If the stratum is delimited by a call-exit
or a call—fail pair, the goal is the body of the relevant procedure. If the stratum is delimited by
a cond—else pair, the goal is the condition of the if-then-else identified by their goal paths inside
the relevant procedure. If the stratum is delimited by a nege—negs or a nege—negf pair, the goal
is the goal inside the negation identified by their goal paths inside the relevant procedure.

When diagnosing a missing answer to the goal defined by a stratum, the declarative debugger
is interested in all the events in the stratum, regardless of whether they led to a solution or not.
However, when diagnosing a wrong answer, the debugger is interested only in events that describe
how that particular answer was computed; it is not interested in alternative disjuncts or exits that
did not lead to the wrong answer. The events of interest are those which represent how forward
execution generated the solution—any events which represent backtracking, or which had been
backtracked over at the point the solution was generated, are not relevant to the solution. We
call a sequence of stratum events like this a contour. Most event types can appear in a contour;
however, redo, fail and negf events indicate that backtracking has happened or is about to
happen, so these events are never part of a contour.

For answers computed from definite clauses, the contour corresponds to the proof of that
answer. However, if the events leading up to a computed answer contain a negated context, then
the contour is slightly more complicated: the events in the negated context are skipped, since
these events are in a deeper stratum. On the other hand, if the goal associated with a stratum
contains a failed negation, then the negated goal succeeded and the events of this goal would have
a similar structure to those leading up to a computed answer. These events correspond to forward
execution, so the stratum anchored by the negenegf pair would contain a contour leading up to
the negf event.

A contour is always anchored at the start by a call or nege event. If it relates to a particular
computed answer or failed negation, then the contour is anchored at the end by an exit or negf
to match the start. It is possible, though, that the goal associated with the contour’s left anchor
event failed. This could be due to the success of a negated call, which would generate a negf event,
a failed call, which would generate a fail event, or a failed builtin such as unification, which would
not generate any event at all. We consider the sequence of events traversed by forward execution
from the left anchor event to the point of failure to also be a contour, with its last event being the
call event of the failed call, the nege event of the negation which failed, or the last event before
the failed unification. Failed contours thus do not have a right anchor matching their left anchor.

In our example, the conjunction of goals from which p(‘a’, 31) is derived consists of
q(’a’, ’a’), r(’a’, 10), and D = 31. and the contour events of that solution are the call and
exit events (if any) of those goals (events 4, 7, 9 and 10), and the internal events 8, 11, 19. The
contour is anchored by the call and exit events of p(‘a’, 31) itself (events 3 and 20). The goal
paths of events 11 and 19 record the decisions about the flow of control that caused p(‘a’, 31)
to be computed. Note that the contour does not include events 12-14; the contour of an exit event
never includes any events that had been backtracked over at the time of the exit, whether they
led to other exits or not. This bypasses all the backtracked-over events not just in all previous



disjuncts (of which in this case there is only one) but also any events that may have followed from
their successful solution.

To illustrate this situation, consider figure 2, which describes the events generated by the exe-
cution of p(’a’, _) in a graphical form. The contour of the exit event of the solution p(‘a’, 31)
consists of the events in the (almost) horizontal path connecting the call port of p near the top
left corner of the outermost box (event 3), to the second exit port of p, on the right hand side
(event 20). At event 11, the contour branches downwards to event 19, to reflect that the second
disjunct has been taken.
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Fig. 2. Box model view of the execution of p(’a’,-)

4 The annotated trace

4.1 The nodes of the annotated trace

The annotated trace is a data structure that contains one node for each event generated by the
goal being debugged. (At least, we will assume so for now; we will assume differently in section
6.2.) Different kinds of events have different kinds of nodes, which contain different sets of fields.

— All nodes have a preceding field which points to the node of the immediately preceding event;
this field is NULL for the first event in the trace.

— The nodes of internal events have a goal_path field that holds the goal path of the event.

— Nodes for disj events have a first_disj field, which contains the event number for the disj
event generated when execution enters the first disjunct of that disjunction. In the node for
the disj event for the first disjunct, this field is thus self-referential.

— The nodes of else, negs and negf events have a context_start field that identifies the start
of the negated context they represent the end of. For else events, it points to the node of the
corresponding cond event; for negs and negf events, it points to the node of the corresponding
nege event.

— The nodes of exit and fail events have a call field that points to the node of the corre-
sponding call event.

— The nodes of exit and fail events also contain a redo field. If the call has succeeded before,
this field points to the node of the redo event that has asked for another solution to be
generated; if the call has not produced any previous solutions, this field will be NULL.

— The nodes of redo events contain an exit field that points to the node of the exit event
corresponding to the previous solution produced by this call.

— The nodes of call events contain a most_recent_interface field that points to the most recent
exit, redo, or fail event for the call. It is initialized to NULL and destructively updated later;
it is the only field in the annotated trace that is so updated. It is also the only field that can
point forward in the trace.



— The nodes of call and exit events have an atom field. Besides recording the identity of the
procedure and the call number of the specific call to this procedure, the atom field also records
the values of the procedure arguments in their state of instantiation at those events. This
means that at calls, the field contains just the input arguments, while at exits it contains all
the arguments. (Because the exit node has a pointer to the call node, in practice it need
only store the subset of this information that is not available at the time of the call.)

Several of these fields exist to make it possible to find all the exit nodes corresponding to a
given call node, and thus find all the solutions (or all the solutions so far) of the call. When the
annotated trace is complete, the most_recent_interface field of every call node in the trace
must point to a fail node or an exit node. From either kind of node, one can follow first their
redo field and then the exit field of the pointed-to redo node, until one finds a NULL redo field;
the set of exit nodes encountered during such a search lists all solutions of the call computed
until the end of the trace. In our example, for call #3, these fields form a chain consisting of the
events 40, 39, 26, 24 and 7. (This alternation of redo and exit events until one reaches the call
event is why the lines marked with (*) in figure 4 are guaranteed to respect the semantics of the
redo field.)

Together with the call field, these fields also allow the declarative debugger, when looking at
the correctness of a particular call, to quickly find the set of body events for that call. By jumping
from a fail or exit event for an immediate descendant directly to the previous redo event of that
descendant, or to the call event if the descendant had no previous redo event, it can avoid all
the computations that take place within that descendant. When looking at call #2, for example,
the debugger can jump from event 26 directly to event 24, or from event 7 to event 4. By jumping
from one of its own redo events to the previous exit event, (e.g. from event 18 to event 15 or
event 23 to event 20), the debugger can avoid all the events generated by code outside the call
tree of interest. Such jumps, and the fields that enable them, are essential for the feasibility of
the algorithms we will later present. In practice, it is quite common for such a jump to jump over
many thousands of events; skipping over that many events one at a time following preceding links
would be far too slow. In our scheme, the number of events a traversal has to visit to gather all
the body events of a call is directly proportional to how many body events the call has.

4.2 Building the annotated trace

Programmers can start declarative debugging from within the procedural debugger by issuing
the command “dd” in either one of two situations. First, at an exit event the programmer may
notice that the values of the output arguments are not correct; a “dd” at that port will initiate
wrong answer diagnosis. Second, at a fail event the programmer may notice that the call did not
produce a solution the programmer was expecting; a “dd” at that port will initiate missing answer
diagnosis. The algorithm the runtime system uses to construct the annotated trace is the same in
both these cases; only the kind of diagnosis that the runtime system asks the algorithm to perform
differs.

The runtime system notes the event number at which the “dd” command was executed
(dd-event), as well as the call number of the call being debugged (call_-number). It uses the
machinery used to implement the procedural debugger’s “retry” command to rewind the compu-
tation back to the state it had at the call event of the selected call; this includes the global counters
for event numbers and call numbers. Therefore when we restart forward execution, we will get the
exact same sequence of events we got before. The difference is that this time, the forward execu-
tion will be in the “construct annotated trace” mode. The effect will be as if we had executed the
build_annotated_trace algorithm in figure 3, although in actuality, each callback to the runtime
system from the program will execute the loop body of that algorithm just once, and the effect
of the loop is supplied by the sequence of callbacks. The create_annotated node algorithm creates
a node for every event inside the call tree of the call being debugged up to and including the
event at which declarative debugging was initiated. (For the time being, we will assume that the
within_depth_limit function always returns true.) If the programmer gives the “dd” command at



event 35, the trace would contain events 3-15, 18-20 and 23-35; if the programmer gives the “dd”
command at event 40, the trace would contain events 4-7, 24-26 and 39-40.

build_annotated_trace(call_.number, dd_event, depth_limit) returns trace is

trace := NULL
inside := false
Loop

If e is a call or redo event for call call_number
inside := true
If inside and within_depth_limit(e, depth limit)
trace := create_annotated_node(e, trace)
If e is an exit or fail event for call call_number
inside := false
Until the event number of e is dd_event

Fig. 3. Algorithm for building the annotated trace

The create_annotated_node algorithm itself is shown in figure 4. Most of the algorithm is quite
straightforward, consisting of filling in fields in the obvious way, but there are a few subtleties,
and most of these (the ones marked with numbered notes) involve searches in contours. In the
following, it will be useful to point out a stratum that the contour belongs to. We will say that
the search is “confined” to that stratum but this is not strictly true: the search can take one step
outside of the stratum, but then it will either terminate or step immediately back inside. To help
us explain how these searches work, we again urge the reader to refer to figure 2.

Consider the case of event 15, which is the exit event for p(’a’, 30), which is in turn one
of the exits for call #2. To find the call event of call #2, we must find the start of the contour
which leads to this exit event. The search starts at the event before the exit, which can be one of
three things: an exit event for an immediate descendant, an internal event of the current call, or,
if the procedure body contains only builtins, the call event of the current call. In all three cases,
the event is on or just before the contour leading to the exit. (The event before the exit cannot
be a redo event for the same call, because the resumption of forward execution after backtracking
always results in an internal event, e.g. a disj event.) In this case, event 14 is an exit event of a
descendant, call #5. The search (marked (1) in the algorithm) follows the contour by repeatedly
applying the step_left_in_contour function (figure 5) until it finds the node it is looking for, the
call event anchoring the contour. This search ignores any events inside #5, as well as any events
subsequent to any previous successes of #5 that have been backtracked over (in this case, there
are none), and continues with the event before its call event. After searching disj event 12 and
then event 11, the search enters the condition of the if-then-else. Since the condition was successful
(there wouldn’t be a then event for it otherwise), it is part of the surrounding context, which is
why search continues with the event before the then. After searching exit event 10, cond event
8 and exit event 7, search arrives at event 3, which is the event we are searching for. Given that
from nested exit and fail nodes step_left_in_contour goes not to the call event but to the event
before the call, the algorithm need not even test the call event’s call number; the first call event
the search finds is guaranteed to be the call event of the right call. Since search stops at that point,
step_left_in_contour will never be invoked on a call node.

For event 20, the second exit event of call #2, the search jumps directly from event 19, the
event for entering the second disjunct, to event 11, the event before the first disjunct. Together
with jumping over the events inside calls, this guarantees that the number of nodes examined by
the search is bounded by the maximum length of a contour. Given that the maximum length of a
contour cannot be bigger than the size of the predicate body and usually is significantly smaller,
this makes the search feasible.
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create_annotated node(e, prev_node) returns cur_node is

Allocate a node of the proper type for event e, call it cur_node
cur_node.preceding := prev_node
switch on the type of e
case call:
Save call details in cur_node.atom
cur_node.most_recent_interface := NULL
case exit:
Save exit details in cur_node.atom
¢ = prev_node;
While c is not a matching call, ¢ := step_left_in_contour(c)
cur_node.call := ¢
cur_node.redo := c.most_recent_interface
c.most_recent_interface := cur_node
case redo:
z := find_prev_contour(prev_node)
While z is not a matching exit, x := step_left_in_contour(z)
cur_node.exit := x
z.call.most_recent_interface := cur_node
case fail:
¢ := find_prev_contour(prev_node)
While c is not a matching call, ¢ := step_left_in_contour(c)
cur_node.call := ¢
cur_node.redo := c.most_recent_interface
cur_node.call.most_recent_interface := cur_node
case swtc:
Save the goal path of e in cur_node.goal_path
case disj:
Save the goal path of e in cur_node.goal_path
If the goal path indicates this is a first disjunct
cur_node first_disj := e
Else
d := find_prev_contour(prev_node)
While d is not a parallel disj, d := stepleft_in_contour(d)
cur_node first_disj := d.first_dis;j
case cond, nege or then:
Save the goal path of e in cur_node.goal_path
case else:
s := find_prev_contour(prev_node)
While s is not a matching cond, s := step_left_in_contour(s)
cur_node.context_start := s
Save the goal path of e in cur_node.goal_path
case negs:
n := find_prev_contour(prev_node)
While n is not a matching nege, n := step_left_in_contour(n)
cur_node.context_start := n
Save the goal path of e in cur_node.goal_path
case negf:
n = prev_node
While n is not a matching nege, n := step_left_in_contour(s)
cur_node.context_start := n
Save the goal path of e in cur_node.goal_path

Fig. 4. Algorithm for creating a node in the annotated trace
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step_left_in_contour(this) returns next is

switch on the type of this node
case call: raise an exception
case exit: next := this.call.preceding
case redo: raise an exception
case fail: raise an exception
case cond: next := this.preceding
case then: next := this.preceding
case else: next := this.context_start.preceding
case nege: raise an exception
case negs: mnext := this.context_start.preceding
case negf: raise an exception
case swtc: next := this.preceding
case disj: next := this.first_disj.preceding

Fig. 5. Algorithm for stepping to the left in the current contour

find_prev_contour(this) returns on_contour is

switch on the type of this node
case call: raise an exception
case exit: on_contour := this
case redo: on_contour := this.exit.preceding
case fail: on_contour := this.call.preceding
case cond: raise an exception
case then: on_contour := this
case else: on_contour := this
case nege: raise an exception
case negs: on_contour := this
case negf: next := this.context_start.preceding
case swtc: on_contour := this
case disj: on_contour := this

Fig. 6. Algorithm for finding a previous contour

While the search for a call matching an exit is confined to the stratum anchored by the exit
and its matching call, that is, it touches only events inside the call tree of the call concerned, the
search for the exit event matching a redo (marked (2) in the algorithm) is instead confined to an
enclosing stratum which contains those two events. Taking the box model view of this situation,
we could say the search proceeds outward from the box rather than inward. Consider event 24, the
redo for call #3 after the exit q(’a’, ’a’). The search starts at event 23, a redo for call #2, the
parent of call #3. The first step is to find any event on a contour which contains the sought-for
exit; this is performed by the find_prev_contour function (figure 6). In many cases the argument
to this function is already on the required contour, so it is immediately returned; however, in this
case the argument (event 23) is a redo for the enclosing procedure, so the function returns the
event which precedes the exit matching event 23, event 19. The contour leading to this exit event
of the enclosing call (call #2) must contain the sought-for exit (because you cannot backtrack into
call #3 from call #2 if call #3 had not previously succeeded). Once we have located the right
contour, we again apply step_left_in_contour until we find the event we are looking for. Unlike
call nodes, many exits can be reached by following this procedure, so in this case we must look for
an exit which has the same call #. Of the exit events with the right call #, we are guaranteed to
find the most recent one, since find prev_contour will not jump over any events that are inside
that call, including the sought-for exit.
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The search for a call matching a fail (marked (3) in the algorithm) is similar to the search for
an exit matching a redo, except it is confined to the stratum anchored by the call and fail events.
For example, for event 41, the fail event for call #2, the search starts at event 40, the fail event for
call #3. From there, it skips immediately to event 3, the event we are searching for. The search
for the call event matching event 40 is a bit more interesting. It starts at event 39, a redo for call
#3, and then jumps to event 25, the event before the previous exit of call #3, thus bypassing all
events outside the call tree of call #3 since that exit. Event 25 is on a contour which is anchored
on the left by event 4, the call event we are searching for, so we again use step_left_in_contour
to find the start of the contour: event 25 is the second disj event for call #3 and it is matched by
first disj event 6, so the search jumps to event 5, before finding the matching call event, event 4.

The search for an earlier parallel disj event (marked (4) in the algorithm) is similar to the search
for a call event that matches a fail event. The search is confined to a stratum which contains both
disj events. We can test whether an earlier disj event is parallel to the current one by checking
that the goal paths are identical up to but not including the last component. The parallel disj
event the search finds is for the immediately previous disjunct of the same disjunction, which may
or may not be the first. However, in either case, its first_disj field must point to the node of
the event denoting entry to the first disjunct.

The search for a cond matching an else and the search for a nege matching a negs are analogous
to the search for a call matching a fail (these are marked (5) in the algorithm). The main difference
is that (obviously) the events anchoring the stratum are different. Likewise, the search for a nege
matching a negf is analogous to the search for a call matching an exit.

5 Diagnosis

5.1 A declarative view

Declarative debugging requires that we reason about the correctness of parts of the execution of a
program. Our view of the execution is a sequence of events, so it is useful to take a more declarative
view of some of the events in the annotated trace. In particular, we are interested in the events
which can anchor the end of a contour or stratum. An exit event asserts that the atom associated
with it is valid. A fail event asserts that every instance of the call atom which is valid is also an
instance of one of the solutions. A negf event corresponds to a negated goal in the program. It
asserts that, given the bindings of variables non-local to the negation at the time of the matching
nege event, the negated goal is satisfiable. Similarly, negs events assert that the negated goal
is unsatisfiable; else events do likewise for the condition of the corresponding if-then-else. (The
remaining event types cannot be the right anchors of contours or strata and thus have no such
associated assertions.) An event can be considered correct if the assertion it makes is true in the
intended interpretation. Thus a wrong answer is an incorrect exit event, and a missing answer is
an incorrect fail event.

The events with assertions always anchor the end of a stratum. In the case of exit and negf
events, the stratum contains a contour leading up to the event. The event shows that a particular
goal in the program succeeded; the information in the contour is sufficient to explain the success
of that goal, since alternative solutions and disjuncts are irrelevant to the success. We therefore
define the contour to be the ezplanation of the event which anchors it on the right. In the case
of fail, negs and else events, the event shows that a particular goal in the program will not
produce any more solutions; the failure to do so cannot be explained by any single contour, but
only by the entire stratum. We therefore define the explanations of events of those types to be
their entire stratum.

If an event e is incorrect but all the events in its explanation are correct, then the part of the
program that generated the events and its explanation must contain a bug. On the other hand, if
event e is incorrect and one or more of the events in its explanation are also incorrect, then it is
likely (though not certain) that the incorrectness of e is caused by the incorrectness of its children;
incorrectness propagates to ancestors. In our example, the first solution of the call to p anchors
the end of a contour which includes the call to s, so incorrectness of the exit event for s could
be the cause of incorrectness of the first exit event of p.
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We therefore find it convenient to define a tree, the root of which is any incorrect event in the
trace. The nodes of this tree come from the events of the annotated trace that have assertions
associated with them. The children of a given node are those nodes which can propagate incor-
rectness to it: for any event P, the children of P are defined to be all of the events which make
assertions in the explanation of P. Since we have a definition of correctness for nodes, this tree
is an instance of a scheme of Naish [7]. A bug is a node in the tree which shows where correct
premises are combined together to form an incorrect result; in other words, a bug is an incorrect
node with no incorrect children. Such a node corresponds directly with a part of the program
which is either incomplete, or is inconsistent with the intended interpretation. One advantage of
using this scheme is that it simplifies the design of the debugger: it separates the definition of a
bug from the search strategy used to find a bug. It is trivial to show that every tree must contain
a bug; we do not address the search strategy in this paper.

node_children(node) returns children is

If the type of node is ‘exit’ or ‘negf’

children = ()

e := node.preceding

While type of e is not ‘call’
If e makes an assertion

children = children U e

e := step_left_in_contour(e)

Loop

If the type of node is ‘fail’ or ‘negs’ or ‘else’

children = ()

e := node.preceding

While type of e is not ‘call’
If e makes an assertion

children := childrenU e

e := step-in_stratum(e)

Loop

Fig. 7. Algorithm for finding the children of a node

Figure 7 shows the algorithm for finding the children of a node. We start at the event pre-
ceding the node, and repeatedly apply a function that steps back through the explanation. On
the way, the events that make assertions are collected. If the goal in question was successful,
step_left_in contour (figure 5) is the function we use to traverse the contour anchored by the
node. For example if the parent is event 15, a wrong answer node for the atom p(’a’, 30), the
algorithm visits events 14, 12, 11, 10, 8, 7 and 3. On the way it picks out events 14, 10 and 7
(which are all exit events) as the children. On the other hand, if the goal in question failed, then
we need to traverse the entire stratum, so we call the step_in_stratum function instead (figure 8).
The differences between this function and the earlier one are the following.

— At a fail event we go to the previous matching redo (if possible) instead of the matching call,
which means that the search includes goals to the right of the failed goal.

— At an exit event we again go to the matching redo (if possible) instead of the matching call,
which means that the search includes goals following previous solutions of the call.

— At a disj event we go to the preceding node rather than stepping over to the event before the
first disj, which means that the search includes goals in and following alternative disjuncts.

These differences ensure that we cover the entire stratum. As an example, consider event 41, which
is a missing answer node for the atom p(’a’, _), with solutions p(’a’, 30), p(’a’, 31) and p(’a’, 32).
The children generated by this process are events 40, 34, 30, 26, 14, 10 and 7.
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step_in_stratum(this) returns next is

switch on the type of this node
case call: raise an exception
case exit: If this.redo = NULL
next := this.call.preceding
Else
next := this.redo.preceding
case redo: next := this.exit.preceding
case fail: If this.redo = NULL
next := this.call.preceding
Else
next := this.redo.preceding
case cond: mnext := this.preceding
case then: mnext := this.preceding
case else: next := this.context_start.preceding
case nege: raise an exception
case negs: next := this.context_start.preceding
case negf: next := this.context_start.preceding
case swtc: mext := this.preceding
case disj: next := this.preceding

Fig. 8. Algorithm for stepping to the previous event in a stratum

Our implementation actually uses a variation on the tree defined above. Since else, negs and
negf nodes correspond to anonymous constructs inside procedures and not to named procedures,
it is difficult to verify their correctness by asking the oracle a question. Therefore, for each such
node n we remove n from the tree, and attach its children directly to the nearest ancestor of n
that is an exit or fail node. All of the nodes in our tree are thus wrong answer (exit) nodes
or missing answer (fail) nodes. Our debugger does not become unsound by doing this; it merely
loses the ability to narrow the location of a bug down to a negated context inside a procedure
body.

When finding the children of a wrong answer node, the contour traversal covers internal events
which tell us which parts of the body of the procedure were used in the contour that produced
that answer. We can collect the goal paths associated with these events; in our example, the goal
paths “c2;7;”, “c2;t;” and “c2;t;d1;” would be recorded alongside the wrong answer node. The
resulting tree is shown in figure ??. When finding the children of a missing answer node, however,
we do not collect goal paths since these cannot help to explain why a stratum unexpectedly fails.

Figure 9 shows the tree for event 41. This time there are both exit and fail events so the tree
has both wrong answer nodes and missing answer nodes. The missing answer nodes in this tree
are drawn as boxes, with the call atom in the top left corner and the solutions (if any) down the
right hand side.

Wrong answer nodes may have missing answer nodes as children and vice-versa. For example,
this can happen if a procedure uses negation. In this situation, other debuggers switch from
generating wrong answer nodes to generating missing answer nodes, or vice-versa. However, our
debugger does not have such a mode switch. The kind of nodes that can be generated from a goal
depends only on whether that goal succeeded or failed; it is unaffected by the state the debugger
is in outside of that goal. In our example, the children include missing answer nodes for r(’b’, )
and q(’b’, _) because the goals containing these calls failed. It is irrelevant that the parent is a
missing answer node—these nodes would also have been children of the wrong answer node for
p(a’, 32).

The strong mode and determinism systems of Mercury allow us to a priori remove some missing
answer nodes from the tree. Calls to procedures which are guaranteed to succeed exactly once,
i.e. those with determinism det and ccmulti, do not generate redo and fail events. Calls to
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Fig. 9. Declarative view of the annotated trace after event 41

procedures which are guaranteed to succeed at most once, i.e. those with semidet and cc_nondet,
and which do in fact succeed, do not generate redo and fail events either. This means that there
can never be any missing answer nodes for these calls, even though they may be called from a
context which ultimately fails. Assuming the determinism declarations in the program are correct,
such procedures can have at most one answer, so if there is a missing answer then the computed
answer must have been wrong.! Since there exists a wrong answer node to cover this case, the
algorithm is justified in removing the missing answer node. In figure 9, there is no missing answer
node for s because it is declared det, and neither is there one for the first call to r, because it is
declared semidet and it succeeds.

The assumption that we are making here is not a strong one: if the declarations are incorrect,
the program will generally get a compile time error because the compiler checks that such dec-
larations are consistent with the program. There is a small possibility, though, that the program
contains another bug which makes the program clauses consistent with the incorrect declaration,
without making them inconsistent with any other; in these cases, the debugger may give misleading
results. Such cases are rare; handling them is future work.

5.2 The diagnoser

After a programmer issues the “dd” command at an incorrect exit or fail event, the debugger
builds the annotated trace then passes it to a front end which performs the diagnosis. Diagnosis
consists of asking the oracle a series of questions about the intended interpretation; these answers
are used to locate a bug in the materialized part of the tree. A database stores all previous answers,
so if a question has already been asked its answer will be retrieved from there; the programmer
is never asked the same question twice. For each node in the tree, there is one question: is the
assertion made by that node correct? Obviously, the possible answers that the oracle can give
include “yes” and “no”. However, the oracle can also answer “don’t know” which essentially asks
the diagnoser to search in a different part of the tree. The diagnoser will do this if possible, but
will revisit the question later if necessary.

! The case where the computed answer is an instance of a more general answer, but does not cover some
other instance, cannot occur due to the strong mode system of Mercury.
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Pereira’s principle of “rational” debugging, presented in [9], is that the steps taken by a debug-
ger should be both necessary and sufficient to determine the correctness of a node. Our debugger
conservatively approximates this: the children of a given node are sufficient but not always neces-
sary to determine whether the node is a bug. For example, even though a successful negation that
leads immediately to a computed answer for a goal can never be the source of a missing answer
for that goal, we still generate a node for it. Furthermore, if a computed answer is mostly correct
but contains some incorrect subterm, knowledge of the binding times of variables can make some
children irrelevant. Finding a closer approximation to rational debugging is future work.

When a bug is found, it is displayed to the programmer in a suitable format. If it is a wrong
answer node it is called an “incorrect contour”, meaning that the program code associated with
that contour contains a bug. The contour can be determined from the goal paths collected for
that node. If the bug is a missing answer node it is called a “partially uncovered atom”. Since
the oracle does not actually supply missing answers, but merely points out when incompleteness
exists, our debugger cannot report that an atom is totally uncovered.

A future diagnoser could also allow the oracle to answer “inadmissible”, meaning that neither
yes” nor “no” is applicable because the goal in question should never have been called. This
answer would be different to “don’t know”, in that the diagnoser would not revisit the question
later. Allowing such an answer would make ours a three-valued debugger rather than a two-vaelued
debugger. This, for example, could provide us with a means for handling exception events. Naish
has a scheme to deal with this kind of debugger. The annotated event trace would not need to be
changed to accommodate this scheme; only the definition of correctness of events and the definition
of bug in the debugging tree would need to be changed. For details, refer to [8].
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6 Practical issues

6.1 Repeatability

One of the key assumptions that our algorithm relies on is that the declarative debugger can reset
the computation to the state it had at the time of a given call; unfortunately, this is not always
true. In order to rewind the computation back to the state it had at the time of a call event, the de-
bugger needs to know the values of the input arguments of that call. When generating debuggable
executables, the compiler therefore tries to preserve the values of all the input arguments so that
they are available at all events within the lifetime of the call. However, Mercury permits program-
mers to declare that the mode of an argument is “di” or “destructive input”, which means that
the storage occupied by that argument may be destructively updated during forward execution.
Such destructive update may be performed automatically by the compiler, or, if the predicate is
actually implemented using Mercury’s foreign language interface, by the programmer writing the
C code of the predicate. The former can be easily avoided by turning off the optimization when
generating debuggable executables, but the second is a real problem.

One could try to solve the problem by making copies of the values of destructively updated
input arguments, in practice this is not feasible, for several reasons. First, it is possible that the
type of the destructively updated argument is also defined in C and unknown to Mercury; in that
case the Mercury language implementation would not know what algorithm to use to make the
copy. Second, the debugger does not know in advance which calls the user may wish to retry, and
thus would be forced to make copies of the destructively updated arguments in all calls, and to
keep those copies for the entire lifetime of the call they came from. Given that programmers are
more likely to make a data structure destructively updated if updating it nondestructively is slow
(i.e. if the data structure is big), this is a serious problem, especially given that any predicate
that processes all elements of the data structure will have each call for each element live at once
(turning on debugging defeats tail recursion optimization in Mercury). Therefore this solution
can eagsily require storing thousands of copies of megabyte sized data structures. Even worse,
the destructively updated variables that represent the state of the world, which Mercury uses to
implement a sound semantics for I/O, cannot be backed up even in principle.

Fortunately, data types implemented outside Mercury are fairly rare. The Mercury standard
library supplies one, type array, but it also supplies the type bt_array which is implemented in
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Mercury and has the same operations. Therefore when debugging their programs, when perfor-
mance is not as critical as it can be later, programmers can simply use bt_array instead of array.
The only other frequently used uncopyable type is the I/O state.

However, we have developed a technique that we can use to retry predicates that perform
I/O actions that does not require backing up the state of the world. This technique is based on
tabling the predicates that implement primitive I/O actions. In Mercury, a predicate can perform
I/0 only if it has two arguments of type io:state: the first, whose mode is “destructive input”,
represents the state of the world before the predicate’s I/O operations, while the second, whose
mode is “unique output”, represents the state of the world after the predicate’s I/O operations.
However, predicates in Mercury never perform I/O directly. Instead, they call predicates (usually
in the Mercury standard library) that have Mercury interfaces but are actually defined in C code.

(This technique is similar in spirit to a technique proposed by Calejo [2], but differs considerably
in the details.)

We have a solution for the problem of how to handle I/O states based on tabling the predicates
that implement primitive I/O actions. and that when the proposed solution to I/O states is
implemented,

Therefore for the time being, the retry operation will work only if destructive update does not
appear anywhere in the call tree of the procedure being debugged.

We estimate that about 95% of the predicates that people write fall into the subset of Mercury
that our declarative debugger can handle. While this is

:- pred io__read_char_code(io__input_stream, int, io__state, io__state).
:— mode io__read_char_code(in, out, di, uo) is det.

% Reads a character code from specified stream.

% Returns -1 if at EOF, -2 if an error occurs.

:- pragma foreign_proc("C",
io__read_char_code(File::in, CharCode::out, I00::di, I0::uo),
[will_not_call_mercury, tabled_for_io],

CharCode = mercury_getc((MercuryFile *) File);
I0 = I00;
Il).

:- pred p(int, string, io__state, io__state).
:- mode p(in, out, di, uo) is det.

p(Inl, ..., InM, OQutl, ..., QutN, SO, S) :-
:- $pragma(...).

p(Inil, ..., InM, Outil, ..., OutN, SO, S) :-
increment_io_action_counter(UpdatedCounter),
lookup_io_action_table(UpdatedCounter, ActionTableSlot),
(if
table_has_no_block(ActionTableSlot)
then
$pragma(...), % Original procedure body
table_create_block(ActionTableSlot, N + M + 1, Block),
table_assign_to_block(Block, 0, <<info_about_p>>),
table_assign_to_block(Block, 1, Inl),

table_assign_to_block(Block, M, InM)
table_assign_to_block(Block, M + 1, Outl),

table_assign_to_block(Block, M + N, OutN)
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else
table_pickup_block(ActionTableSlot, Block),
table_restore_from_block(Block, M + 1, Outl),

table_restore_from_block(Block, M + N, OutN),
S = S0

6.2 Limiting memory usage

One of the design objectives of Mercury was to make it easier to construct large programs. Large
programs tend to have long run times and thus generate many events; the Mercury compiler, which
is a Mercury program, generates several hundred million events when compiling large files. Given
that each node in the trace requires about a dozen bytes of memory, annotated traces derived
from that many events would require amounts of storage that are currently infeasible.

To avoid this problem, the within_depth_limit function from figure 3 doesn’t always return true.
If the call call_number is at depth call_depth, then within_depth_limit will return true for an event
e at depth d if and only if either d < call_depth + depth_limit, or e is an interface event and d =
call _depth + depth limit. Therefore at depths between call_depth and call_depth + depth_limit —1,
the annotated trace has the same information as before, but it has only summaries for calls at
depth call_depth + depth_limit. The diagnosis algorithm may still be able to identify the exact
cause of the problem, but now it is also possible that it may not. However, in the latter case it will
have narrowed the bug’s location down to a single call (call it ¢) at depth call_depth + depth_limit.
The debugger will therefore rewind the program state back to the call event of ¢ (or to any event
before that), and reexecute the build_annotated_trace algorithm again, but this time to build
an annotated trace for ¢. This means passing ¢ as the value of the call_ number parameter, and
the number of the exit or fail event of ¢ corresponding to the problem isolated by the diagnosis
algorithm as the value of the dd_event parameter.

Not only does this algorithm avoid the requirement to store the entire annotated trace all at
once, for events below correct calls at the depth limit boundary, which may be a large majority of all
events, it never creates a node at all. The price it pays for this is the time taken to reexecute parts
of the program, possibly several times. Increasing the value of depth_limit reduces the number
of reexecutions at the cost of increasing the storage requirement, not only for the nodes of the
evaluation tree, but also for the data structures which are referred to from the extra nodes whose
storage therefore cannot be recycled by the garbage collector. This is a classic space/time tradeoff.

The usual preferred choice in such situations is the maximum value for depth_limit that re-
sults in acceptable memory consumption, because this minimizes the number of recomputations
required. In our prototype debugger, depth_limit is fixed. Although it would be trivial to allow
programmers to set its value, they would have no good basis on which to do so. One possible way
to adjust depth_limit automatically would be to start with a value that is known to be on the high
side, and to have the debugger decrement it when it detects that its own memory consumption is
too high. In order to free up memory, the decrement would have to be coupled with freeing the
parts of the annotated trace that would not have been created had depth_limit had the smaller
value from the beginning. This may need to be done several times. Of course, allocating a node,
filling in its fields, and then later freeing it is a waste of time; the bigger the discrepancy between
the initial and the final value of depth_limit the bigger this waste is. One could try to reduce the
waste by deriving a good estimate of a likely good value for depth_limit from profiling information,
about the typical branching factors of predicates, about the typical numbers of internal events they
generate, and about the typical amount of otherwise garbage-collectable memory pinned down by
keeping saved copies of their arguments.

6.3 Debugging the debugger

Our prototype implementation is largely written in Mercury, so the question naturally arises:
can we use the debugger to debug itself? The main complication with doing this is that the
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underlying infrastructure of the procedural debugger does not (yet) support the simultaneous
debugging of multiple threads. Our prototype effectively runs in a parallel thread to the program
being debugged, so it is not accessible to the procedural debugger under normal circumstances.
The solution we have adopted is that, whenever the debugger is to be applied to itself, we save
the annotated trace in a file, and then run the prototype in a separate process with that file as
input. The problem with this approach is that there are conflicting requirements: for reasons of
efficiency the usual implementation needs to avoid deep copying of data terms, whereas writing
to a file requires this to happen.

We use Mercury’s typeclasses to create an abstract data type that models the annotated
trace. Being abstract, the data is not tied down to a particular representation, so we can achieve
the best of both worlds by creating different instances of the abstract data type for different
circumstances. The normal instance requires the analyser to be in the same process, and represents
the data directly without the need for deep copying; the alternative instance sacrifices efficiency
for functionality, using deep copying but allowing the data to be written to a file. This alternative
representation is used whenever the programmer wishes to apply the debugger to itself; in all other
cases the normal representation is used.

7 Conclusion

Annotated event traces efficiently store a representation of execution that is practical for declar-
ative debugging. The annotations are relatively compact, and the algorithm to compute them
is both simple and fast. And since the annotations on each event link it to semantically related
events in the execution, the debugging algorithm can quickly and easily construct on demand
the portions of the debugging tree of interest to it. This ability to efficiently retrieve semantically
connected information could also have uses other than those presented here. One future possibility
is to implement a graphical debugger which visually represents execution with some variation on
the box model, or in the style of the Transparent Prolog Machine [4], using the annotated trace
to store the information internally.

Contours are a central concept in the annotated trace. For an event in the trace, the contour
describes how forward execution reached that particular event in the body of the relevant proce-
dure. Contours are useful because they provide an explanation for events, which we use as a basis
for our debugging tree, and because they narrow down the space which needs to be searched to find
other events which are semantically related. This is essential for the feasibility of our algorithms.

Our work is related to the leaf failure tracking algorithm of Ducassé [3], which identifies par-
ticular event patterns related to failure in the body of Prolog goals. The main difference is that
our system generates comprehensive explanations of both success and failure, whereas leaf failure
tracking searches through failures to find ones that are likely to show why a goal unexpectedly
fails. Leaf failure tracking aims to help programmers understand how a bug symptom (failure) has
been produced; on the other hand, our aim is to find the precise location of a bug related to a
symptom (failure or success), so we must perform a far more complete analysis of the trace.

Earlier declarative debuggers (for example, Calejo’s framework [2]) treat wrong answers and
missing answers uniformly when traversing the debugging tree, but not when defining the tree. In
contrast, annotated event traces are defined independently of the kind of diagnosis required—they
are flexible enough to provide either kind. This is necessary in order to support the operational
semantics of Mercury’s if-then-else: the goal in the condition is considered to be negated if and only
if it fails, so until execution reaches the end of a condition the debugger does not know whether it
will be providing the explanation of a negated goal or not.

We have implemented a debugger for Mercury based on annotated event traces. One of the
advantages of using Mercury is that it has strong mode and determinism systems, which allow
the execution algorithm to be optimized in many cases (for example, deterministic code). This is
reflected in our debugging tree: we a priori remove some missing answer nodes from consideration.
Our implementation uses a depth bound to limit memory consumption, which means that the
algorithm can be scaled up to large examples at the cost of having to re-execute parts of the
program. It supports some flexibility in the way that debugger questions can be answered by
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the oracle. In future we plan to increase the flexibility by basing the debugging tree on a three-
valued logic rather than a two-valued logic. This would not require any change to the annotated
trace; we could move to a three-valued logic simply by changing the definition of correctness for
individual events, and changing the definition of a bug in the debugging tree. The latest version
of our debugger is freely available as part of the Melbourne Mercury implementation, which can
be found at http://www.cs.mu.oz.au/mercury.

We would like to thank the Australian Research Council for their support.
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