Writing Business Rules Engines In
Mercury

lan MacLarty

24 July 2009

-

missioncriticalit.com

What is a Business Rules Engine?

 Domain Experts create rules that define the
behaviour of the system.

 Rules are of the form: if condition then
consequence.

» Rules act on a model of the system.

 For example: if period in empoyment < 3
months and assets < $710000 then reject the
loan.

* Makes it easier for non-developers to adjust the
behaviour of the system.

» Separates “business” knowledge from |. T
knowledge.

Example: llog JRules (IBM)

* Rules act on Java (.NET) objects directly by
iInvoking methods.

 For example:

If applicant.getEmployedMonths() < 3 and
applicant.getAssets() < 10000 then
applicant.rejectLoan()

» Actions or conditions may have side effects.

» Can only execute the rules one way.
» Users must worry about priority of rules.

» Limited debugging (no declarative debugging, no
retry)

MC Rules Engine

Declarative (FOL)
Based on SWRL (rules) and OWL (model)
Many different ways to use rules:

e Compute results
* Error messages

* Work out what questions to ask user to try to
achieve a particular result

* Declarative debugging
Hopefully simpler for domain experts

Where the rules engine fits in

Simplified architecture of a “typical” MC app:

Browser

http

Ul (Java)

~
7

Database

-~

Modelling language (OWL)

» Classes (sets of individuals)

* Subclass, Union, Intersection
 Complement (not that useful because of OWA)
* E.g. Applicant, RejectedApplicant

* Properties (binary relations)
* Functional, Transitive, Symmetric
 Domain, Range
 £.g. months _employed, assets

Rule language (SWRL)

e Horn clauses
 Allowed atoms:

e Class literals
* Property literals
e “Builtin” literals

 E.q.

months_employed(?applicant, ?months) A
lessThan(?months, 3) A
assets(?applicant, ?assets) A
lessThan(?assets, 10000.0)

— RejectedApplicant(?applicant)

Some more (real) example rules:

 Compute risk tolerance:

risk_tolerance_score(?investor, ?score) A
greaterThan(?score, 32) A
lessThanOrEqual(?score, 48)

— risk_tolerance(?investor, defensive)

e Validation rule:

retirement_savings_premium(?investor, ?premium)
— lessThanOrEqual(?premium, 870.0)

Evaluating the rules in Mercury

:—- pred swrl query(snapshot (Store) ::in,
Builtins: :1in,
Program: :1n,
swrl conjunction::in,
set (swrl substitution)::out) 1is det
<= (rdf store(Store),
builtins structure (Builtins),
swrl program(Program)).

Reading the database without the
|O state.

Some of the rule engines use backtracking, so can't
take the 10 state.

snapshot(Store) represents a snapshot of the
database of type Store.

Queries on a snapshot always return the same results,
so it can be pure without requiring the 10 state.

Enforced using repeatable read transaction.
Can only create a snapshot by opening a transaction:

:— pred transaction (

pred (snapshot (Store), T) ::in(pred(in, out) 1is det),
Store::rdfin, Store::rdfout, io::di, 1o::uo) 1s det
<= rdf store(Store).

Custom Builtins

 The SWRL spec allows for custom builtins.
* \We allow custom builtins by supplying a

typeclass:
:— typeclass builtins structure (Structure) where [
pred evaluate builtin (snapshot (Store) ::1in,

Structure::1in, builtin 1d::in, swrl args::in,
builtin result::out) 1is det
<= rdf store(Store)

:— type builltin result
-——-> ok(set(swrl substitution))
unbound var
not supported.

Notes on the builtins structure
typeclass

e Lack of 10 state means builtins cannot have
side effects and must be pure (i.e. produce the
same results for the same inputs).

* Important that builtins don't have side effects,
because that would limit how we can evaluate
the rules (would impose an operational
semantics)

* |f the arguments are not sufficiently instantiated
then the builtin can return 'unbound_var' and
the engine can delay the builtin until more
arguments are instantiated.

Some example builtins
o Standard builtins:

* add, subtract, multiply, greaterThan, lessThan, etc
* Get the current date:

» today(?today)

* Current date set in builtins_structure, so always
returns same result when evaluating a query and
not |O state required.

 Evaluate a spreadsheet:

» eval spreadsheet("data.ods”, “A1”, ?input,
“‘B27, ?output)

 Spreadsheet parsed and stored in builtins_structure
before query run.

Top-down, non-deterministic engine

* First engine implemented.
* Can do expensive re-evaluation (no tabling)
* Does not handle rules such as:

partner(?x, ?y) — partner(?y, ?x)

* \Was the main reason for adding snapshots and
omitting the 10 state from the query predicate.

Tracing engine

e Generates a trace.

* Required re-implementing non-deterministic
engine to be deterministic, so that we could
thread a trace state around.

* Trace used to do declarative debugging.

* Also to generate proof trees for validation error
messages.

age(?investor, ?age) — greaterThanOrEqual(7age, 18)

Mercury Tabled engine

Non-deterministic.

Use Mercury's memoing to avoid recomputation
(can be expensive when querying databases).

Use Mercury's minimal model tabling to handle
rules such as: partner(?x, ?y) — partner(?y, ?x)
Required a few “dirty tricks” to get right (e.q.
memoing snapshot by pointer)

Buggy, and debugging difficult.

Not really sufficient control over memo-table
(e.g. couldn't clear table for one particular
snapshot).

Transparent Tabled engine

Deterministic.

Thread around an explicit memo table.
Inspired by OLDT resolution.

Much more control over memo table.
Code quite simple (only ~450 lines).
Performance very good so far.

Easier to implement optimisations with
deterministic code (harder to reason about
operational semantics with non-det code).

Transparent Tabled engine

benchmarks:
Test MC Pellet
1 0.28 7.73
2 0.51 27.46
3 0.84 552.81
4 0.24 8.51

Other engines

» “Set” engine — tries to group queries to the
database, so that joins can be done on the SQL
database.

» Constraint solving engine?

Demo...

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

