

Writing Business Rules Engines in
Mercury

Ian MacLarty

24 July 2009

What is a Business Rules Engine?
● Domain Experts create rules that define the

behaviour of the system.
● Rules are of the form: if condition then

consequence.
● Rules act on a model of the system.
● For example: if period in empoyment < 3

months and assets < $10000 then reject the
loan.

● Makes it easier for non-developers to adjust the
behaviour of the system.

● Separates “business” knowledge from I.T
knowledge.

Example: Ilog JRules (IBM)
● Rules act on Java (.NET) objects directly by

invoking methods.
● For example:

if applicant.getEmployedMonths() < 3 and
applicant.getAssets() < 10000 then
applicant.rejectLoan()

● Actions or conditions may have side effects.
● Can only execute the rules one way.
● Users must worry about priority of rules.
● Limited debugging (no declarative debugging, no

retry)

MC Rules Engine

● Declarative (FOL)
● Based on SWRL (rules) and OWL (model)
● Many different ways to use rules:

● Compute results
● Error messages
● Work out what questions to ask user to try to

achieve a particular result
● Declarative debugging

● Hopefully simpler for domain experts

Where the rules engine fits in

Simplified architecture of a “typical” MC app:

Browser UI (Java) Rules Engine
(Mercury) Database

http gpb

Modelling language (OWL)

● Classes (sets of individuals)
● Subclass, Union, Intersection
● Complement (not that useful because of OWA)
● E.g. Applicant, RejectedApplicant

● Properties (binary relations)
● Functional, Transitive, Symmetric
● Domain, Range
● E.g. months_employed, assets

Rule language (SWRL)

● Horn clauses
● Allowed atoms:

● Class literals
● Property literals
● “Builtin” literals

● E.g.

months_employed(?applicant, ?months) Λ
lessThan(?months, 3) Λ
assets(?applicant, ?assets) Λ
lessThan(?assets, 10000.0)
→ RejectedApplicant(?applicant)

Some more (real) example rules:

● Compute risk tolerance:

● Validation rule:

risk_tolerance_score(?investor, ?score) Λ
greaterThan(?score, 32) Λ
lessThanOrEqual(?score, 48)
→ risk_tolerance(?investor, defensive)

retirement_savings_premium(?investor, ?premium)
→ lessThanOrEqual(?premium, 870.0)

Evaluating the rules in Mercury

:- pred swrl_query(snapshot(Store)::in,
Builtins::in,
Program::in,
swrl_conjunction::in,
set(swrl_substitution)::out) is det

<= (rdf_store(Store),
 builtins_structure(Builtins),
 swrl_program(Program)).

Reading the database without the
IO state.

● Some of the rule engines use backtracking, so can't
take the IO state.

● snapshot(Store) represents a snapshot of the
database of type Store.

● Queries on a snapshot always return the same results,
so it can be pure without requiring the IO state.

● Enforced using repeatable read transaction.

● Can only create a snapshot by opening a transaction:
:- pred transaction(
 pred(snapshot(Store), T)::in(pred(in, out) is det),
 Store::rdfin, Store::rdfout, io::di, io::uo) is det
 <= rdf_store(Store).

Custom Builtins

● The SWRL spec allows for custom builtins.
● We allow custom builtins by supplying a

typeclass:
:- typeclass builtins_structure(Structure) where [
 pred evaluate_builtin(snapshot(Store)::in,
 Structure::in, builtin_id::in, swrl_args::in,
 builtin_result::out) is det
 <= rdf_store(Store)
].

:- type builtin_result
---> ok(set(swrl_substitution))
; unbound_var
; not_supported.

Notes on the builtins structure
typeclass

● Lack of IO state means builtins cannot have
side effects and must be pure (i.e. produce the
same results for the same inputs).

● Important that builtins don't have side effects,
because that would limit how we can evaluate
the rules (would impose an operational
semantics)

● If the arguments are not sufficiently instantiated
then the builtin can return 'unbound_var' and
the engine can delay the builtin until more
arguments are instantiated.

Some example builtins
● Standard builtins:

● add, subtract, multiply, greaterThan, lessThan, etc

● Get the current date:
● today(?today)
● Current date set in builtins_structure, so always

returns same result when evaluating a query and
not IO state required.

● Evaluate a spreadsheet:
● eval_spreadsheet(“data.ods”, “A1”, ?input,

 “B2”, ?output)
● Spreadsheet parsed and stored in builtins_structure

before query run.

Top-down, non-deterministic engine

● First engine implemented.
● Can do expensive re-evaluation (no tabling)
● Does not handle rules such as:

● Was the main reason for adding snapshots and
omitting the IO state from the query predicate.

partner(?x, ?y) → partner(?y, ?x)

Tracing engine

● Generates a trace.
● Required re-implementing non-deterministic

engine to be deterministic, so that we could
thread a trace state around.

● Trace used to do declarative debugging.
● Also to generate proof trees for validation error

messages.

age(?investor, ?age) → greaterThanOrEqual(?age, 18)

Mercury Tabled engine
● Non-deterministic.
● Use Mercury's memoing to avoid recomputation

(can be expensive when querying databases).
● Use Mercury's minimal model tabling to handle

rules such as: partner(?x, ?y) → partner(?y, ?x)
● Required a few “dirty tricks” to get right (e.g.

memoing snapshot by pointer)
● Buggy, and debugging difficult.
● Not really sufficient control over memo-table

(e.g. couldn't clear table for one particular
snapshot).

Transparent Tabled engine

● Deterministic.
● Thread around an explicit memo table.
● Inspired by OLDT resolution.
● Much more control over memo table.
● Code quite simple (only ~450 lines).
● Performance very good so far.
● Easier to implement optimisations with

deterministic code (harder to reason about
operational semantics with non-det code).

Transparent Tabled engine
benchmarks:

Test MC Pellet
1 0.28 7.73
2 0.51 27.46
3 0.84 552.81
4 0.24 8.51

Other engines

● “Set” engine – tries to group queries to the
database, so that joins can be done on the SQL
database.

● Constraint solving engine?

Questions?

Demo...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

