
Unclean! Unclean!
or

Purity Issues in Declarative Constraint Logic
Programming

Ralph Becket

28 March 2006

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Outline

I What is Constraint Logic Programming?

I Mercury before CLP

I Adding CLP to Mercury

I Rogues gallery

I Conclusion

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

What is Constraint Logic Programming?

Vanilla logic programming a la Mercury

I Conjunction, disjunction, negation

I Variables are free or ground

I Backtracking generate-and-test search

I Simple semantics; pure

CLP

I Variables can be constrained (neither free nor ground)

I Constrain-and-generate search

I More expressive

I Complex semantics; some impurity seems necessary

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Mercury in a nutshell

I Mercury is a syntax for FOL augmented with types and
modes.

I (If you think Prolog is a declarative language, then you’re
wrong.)

I Types specify the domains of variables: ints, floats, strings,
algebraic types, etc.

I Logical connectives:
conjunction P, Q, ...
disjunction (P ; Q ; ...)
negation not P
conditionals (if P then Q else R)
unification X = Y (...in four yummy flavours)

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Mercury in a nutshell

I Modes constrain the direction of data flow (i.e., specify which
predicate arguments are inputs and which are outputs).

I Modes are used to constrain the operational semantics of a
Mercury program.

I The denotational semantics of a Mercury program are given
directly by the predicate definitions in the program (it’s just a
syntax for FOL). The denotation of a predicate is the set of
ground terms for which it is true.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Mercury in a nutshell

:- pred append(list(T), list(T), list(T)).
:- mode member(in, in, out) is det.
:- mode member(out, out, in) is multi.

append([], Ys, Ys).

append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Mercury in a nutshell

:- pred append(list(T), list(T), list(T)).
:- mode member(in, in, out) is det.
:- mode member(out, out, in) is multi.

append(H1, Ys, H3) :-
H1 = [], % Test
H3 = Ys. % Assign

append(H1, Ys, H3) :-
H1 = [X | Xs], % Deconstruct
append(Xs, Ys, Zs),
H3 = [X | Zs]. % Construct

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Mercury in a nutshell

:- pred append(list(T), list(T), list(T)).
:- mode member(in, in, out) is det.
:- mode member(out, out, in) is multi.

append(H1, H2, Ys) :-
H1 = [], % Test
H2 = Ys. % Assign

append(H1, H2, H3) :-
H3 = [X | Zs], % Deconstruct
append(Xs, Ys, Zs),
H1 = [X | Xs]. % Construct

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

The life of an ordinary Mercury variable

free −→ ground
I free = contains junk

I ground = completely defined value

I Nothing in between (i.e., no partial instantiation, no variable
aliasing).

I Compiler reorders code to ensure that each variable has a
value before it is used.

I Very efficient: modes checked statically, no untrailing, no
dereferencing, can specialise representation for each type.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Negation: the root of all pain

I Consider the goal not(X < 3)

I If X is ground, then this is easy.

I If X isn’t ground, then we have a problem.

I We don’t want to suspend this goal waiting for X to become
ground because that requires exorbitantly expensive
bookkeeping (and if the negation is a compound goal then...
yikes!)

I So we adopt the Closed World Assumption, allowing us to
implement Negation as Failure, hence we require that ‘input’
variables in negated goals be ground.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

If-then-else goals: slightly painful

I (if P then Q else R) ⇐⇒ (P, Q ; not(P), R)

I The condition P is actually in a negated context.

I So the negated goal rules have to apply.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

If-then-else goals: slightly painful

Assuming Dictionary and Key are ground...

I Bad:

(if lookup(Dictionary, Key, Value)
then true
else false

),
NewValue = Value + 1

I Good:

(if lookup(Dictionary, Key, Value0)
then Value = Value0
else false

),
NewValue = Value + 1

The negation issue will come back to haunt us again...

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Constraint Logic Programming

I In CLP you put constraints on variables before giving them
values.

I Improves search performance by backtracking as early as
possible.

I More expressive: much less bookkeeping code required in the
application program.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Constraint Logic Programming Example

The cryptarithm

S E N D
+ M O R E

M O N E Y

can be simply expressed and efficiently solved by a CLP program:

subset([S, E, N, D, M, O, R, Y], 0 .. 9),
all_different([S, E, N, D, M, O, R, Y]),
S > 0,
M > 0,
1000*(S + M) + 100*(E + O) + 10*(N + R) + (D + E) =

10000*M + 1000*O + 100*N + 10*E + Y,
label([S, E, N, D, M, O, R, Y])

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Constraint Logic Programming Example

An equivalent plain LP solution is far more work

member(D, 0..9),
member(E, 0..9), E \= D,
Y = (D + E) mod 10, C1 = (D + E) / 10,
Y \= D, Y \= E,
member(N, 0..9), N \= D, N \= E, N \= Y,
member(R, 0..9), R \= N, R \= D, R \= E, R \= Y,
E = (N + R) mod 10, C2 = (N + R) / 10,
...

It’s also probably much less efficient.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Adding CLP support to Mercury

Big questions:

I How can we add constrained variables to Mercury (previously
we assumed a variable was either free — junk — or ground —
completely defined)?

I How can we do this without compromising the efficiency of
the whole language (we don’t want to pay for supporting CLP
when we aren’t using it)?

I How can we do this without compromising the clean
semantics of the language?

Here be dragyns...

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

‘any’, a new variable state

An ordinary Mercury variable’s instantiation state (‘inst’) is either
free or ground:

I If X is free then it can unify with any ground value.

I If X is ground then

all [Y, Z] (
unifiable(X, Y) /\ unifiable(X, Z)

=>
unifiable(Y, Z)

)

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

‘any’, a new variable state

Generally a CLP variable is neither free nor ground:
consider X = f(), Y = f(a), and Z = f(b).

I X unifies with Y and Z

I but Y does not unify with Z

We introduce a new inst, ‘any’ to describe X, meaning X is not free
(i.e., it is being managed by some constraint solver), but is not
known to be ground either.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

‘any’, a new variable state

Whether a variables inst is free, ground, or any is important for
compilation. Consider the disjunction

(
X = f(a), ...

;
X = f(b), ...

)

I If X is free, then we have a choice point (i.e., the disjunction is
non-deterministic) and either unification with X will succeed.

I If X is ground, then we have a switch (i.e., at most one of the
disjuncts will be executed).

I If X is any, then we have a choice point, but there is no
guarantee that either of the unifications with X will succeed.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Solver types, a new kind of type

I There are all sorts of CLP domains we want to be able to
handle: LP, FD, SAT (clausal, non-clausal, BDD-based, ...),
sets, Herbrand terms, etc.

I Each CLP domain will have its own representation and
implementation.

I Also, while CLP variables have to support aliasing (all
variables have to support equality), we do not want to lose
the efficiency of non-CLP variables by requiring that all
variables support aliasing.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Solver types, a new kind of type

A solver type connects variables in a particular domain to a
particular constraint solver. Management of solver variables is the
responsibility of their constraint solvers.

:- solver type cfloat
where representation is cfloat_rep,

initialisation is cfloat_init,
equality is cfloat_eq.

I This introduces a new constrained type called cfloat.

I Values of the new type are represented using type
cfloat rep.

I These values are initialised automatically by the cfloat init
predicate.

I Equality between cfloats is handled by a predicate called
cfloat eq.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Representation types

I Q. Why do we need a separate representation type?

I A. Because the representation type is (usually) a ground value
indexing into the constraint store for the type (e.g., an int):

:- type cfloat_rep == int.

I The semantics of the solver type are not those of the
representation type! In particular, different cfloat reps
(that obviously won’t unify) may represent two cfloats that
have been unified.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Representation types

The solver type declaration causes the compiler to introduce some
casting functions:

:- impure func ’representation of cfloat’(cfloat::in(any)) =

(cfloat_rep::out(ground)) is det.

:- impure func ’representation to cfloat’(cfloat_rep::in(ground)) =

(cfloat::out(any)) is det.

And this is where things start to get sordid.

I Since we can only understand these functions through their
operational semantics, we insist that they be marked as
impure.

I And all callers of them have to be marked as impure.

I And so on up the call graph.

I Until we get a promise from the programmer that everything
is all right.

More on this later...

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Constraint stores

I The constraint store is part of the constraint solver
implementation.

I It is not explicitly passed around in “user code” (that would
defeat the purpose: we want to reason about constrained
variables in terms of the constraints placed upon them, not in
terms of states of the corresponding constraint stores).

I So where do we keep the constraint store? Time for more
unpleasantness:

:- mutable(constraint_store, cfloat_constraints, initial_value, ...).

I This constructs a mutable value called constraint store
with type cfloat constraints, whose starting value is
initial value.

I The compiler provides access predicates:

:- impure pred get_constraint_store(cfloat_constraints::out) is det.

:- impure pred set_constraint_store(cfloat_constraints::in) is det.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Hiding the nastiness

We can conceal impurity with promises:

:- pred cfloat_init(cfloat::out(any)) is det.

cfloat_init(X) :-

promise_pure (

impure get_cfloat_counter(N),

impure X = ’representation to cfloat’(N),

impure set_cfloat_counter(N + 1)

).

I The promise pure scope is a declaration by the constraint
solver implementer that cfloat init is pure, even though its
implementation is not.

I In other words, you can’t use cfloat init in any way to
subvert the declarative semantics of a program.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

The story so far...

I Solver types add support for CLP to Mercury.

I A solver type is managed by a constraint solver.

I Solver variables have inst any.

I Solver types are abstract. Only the constraint solver
implementation gets to see the actual representation.

I The constraint solver keeps track of current constraints in a
constraint store.

I Private mutables are used to hold the constraint store.

I All impure code has to be marked as such.

I Pure predicates can be implemented using impure code. It is
up to the implementer to explicitly promise purity at the
interface. (The compiler will get you if you lie.)

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Pear-shaped places

Solver types have some problem areas:

I getting the value of ground solver variables

I labelling solver variables

I existential quantification of solver variables

I solver variables in negated contexts

I solver variables in closures

I sometimes you need impurity

Research is still in progress.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Obtaining values for solver variables

I Once one has set up a system of constraints and found a
solution, the next step is to do something with it (e.g., print it
out).

I This is an awkward spot: the domain of a solver variable (i.e.,
the set of values it can take on) depends upon the constraints
on that variable.

I There are two ways to do this, each with problems

I Method 1:

solve_for_all_variables,
impure ask_ground_value(X, Y)

Method 2:

label_variable(X, Y)

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Method 1

solve_for_all_variables,
impure ask_ground_value(X, Y)

I solve for all variables searches for a complete solution

I But because it is pure, the compiler is free to reorder it,
possibly before some of the goals that posted constraints!

I solve for all variables also has no outputs, so the
compiler will complain if we declare it can succeed more than
once.

I Maybe we should just make it impure (although we have a
glimmer of a better solution that I’ll come to in a moment...)

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Method 1

solve_for_all_variables,
impure ask_ground_value(X, Y)

I ask ground value(X, Y) succeeds binding Y to the ground
value of X, if it is ground, and fails otherwise.

I this clearly depends upon the current state of the constraint
store, hence it must be impure. Hmm...

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Method 2

label_variable(X, Y)

I Non-deterministically binds X to a value Y in its domain

I label variable may well not check that this solution for X
can be extended to a solution for all other variables (it may
well be a performance disaster to do so...)

I In fact, that may well be what we want. E.g., for an hybrid
propagation based solver.

I Plus, we’d rather the compiler didn’t reorder these goals
either, even though they are pure.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Existential quantification

I Consider the following where X, Y, and Z are solver variables
and p and q constrain their arguments:

some [Z] (
p(X, Z),
q(Y, Z)

)

I It is possible that there is no solution for Z.

I The problem here is that p and q will probably post their
constraints lazily (i.e., will not do complete consistency
checking, instead leaving that task to the variable labelling
predicate). This is quite often necessary for performance
reasons because we don’t have any other consistency checking
mechanism other than searching for a solution.

I This isn’t such a problem if we do eventually check that Z has
a solution.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Existential quantification

I But how can we realistically enforce completeness checking?

main(!IO) :-
(if some [X] (post(X > 3), post(X < 3))

then print("Hello, World!", !IO)
else print("Goodbye, cruel world", !IO)

).

I Here we never ask for a solution for X. But what does this
program mean? Operationally, we’d probably expect it to
output ”Hello, World!”. Denotationally we’d expect a
program that prints ”Goodbye, cruel world”.

I So what do we do? Requiring (somehow) that existentially
quantified solver variables have a solution before they go out
of scope (or at least deciding the question one way or another)
could easily be a performance killer for reasons already stated.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Negated contexts, again

(if p(X) then Q else R)

I If X is a solver variable (e.g., a cfloat) with inst any, then
seems to have the same problems that free (non-solver)
variables have.

I That is, because we don’t know whether X is semantically
ground, we can’t make the closed-world assumption, hence
negation as failure isn’t sound.

I Ouch.

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Negated contexts, again

(if p(X) then Q else R)

I Currently has to be marked impure

I Or be in a promise pure scope.

I The latter arises quite often. For example,

promise_pure (
if length(Xs) < 10 then Q else R

)

I A better candidate solution would be to introduce a special
inst describing predicates/closures can only be called in
non-negated contexts...

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Closures containing solver variables

I if X and Y are solver variables then it is fine to say

X < Y

I Surely, then, it is also reasonable to say

P = ((pred) is semidet :- X < Y),
P

I Hmm, but what about

P = ((pred) is semidet :- X < Y),
(if P then Q else R)

I Oh no!

I But if we had a special inst that recognised that P was not
ground, then this problem would go away!

I As would most issues with length(Xs) and
solve for all variables

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

Summary

I Adding CLP is non-trivial

I It does raise the expressive power of the language
I But the price is it complicates the semantics in many places:

I impurity
I promises
I negation
I closures
I ordering issues
I quantification
I completeness/correctness vs. performance

I We have some ideas on how to fix some things

I The correctness issue is crucial

Ralph Becket Unclean! Unclean! or Purity Issues in Declarative Constraint Logic Programming

