
Static region analysis for Mercury?

Quan Phan and Gerda Janssens

Department of Computer Science, K.U.Leuven
Celestijnenlaan, 200A, B-3001 Heverlee, Belgium,
{quan.phan,gerda.janssens}@cs.kuleuven.be

Abstract. Region-based memory management is a form of compile-
time memory management, well-known from the functional program-
ming world. This paper describes a static region analysis for the logic
programming language Mercury. We use region points-to graphs to model
the partitioning of the memory used by a program into separate regions.
The algorithm starts with a region points-to analysis that determines
the different regions in the program. We then compute the liveness of
the regions by using an extended live variable analysis. Finally, a pro-
gram transformation adds region annotations to the program for region
support. These annotations generate data for a region simulator that gen-
erates reports on the memory behaviour of region-annotated programs.
Our approach obtains good memory consumption for several benchmark
programs; for some of them it achieves optimal memory management.

1 Introduction

Memory management is a classic problem in the implementation of programming
languages. Manual memory management using explicit constructs, such as mal-
loc/free in C, is widely known to be error-prone. Therefore automatic memory
management in the form of runtime garbage collection (RTGC) has become an
integral part in many modern programming languages. The use of RTGC is even
more important for declarative logic programming (LP) languages because these
languages have no procedural constructs for memory management, and instant
reclaiming based on backtracking is not feasible in many logic programs. While
runtime garbage collectors for LP languages can reclaim more than 90% of the
heap space of a logic program, they incur execution overhead because collectors
often need to temporarily stop the main program.

Recently, there has been increasing interest in compile-time memory manage-
ment to reduce the overhead and unpredictability of RTGC. This static method
generally follows two approaches: compile-time garbage collection (CTGC) and
region-based memory management (RBMM). CTGC looks for program points
at which allocated memory cells are no longer used and instructs the program to
reuse those cells for constructing new terms, reducing the memory footprint and
in some cases achieving faster code. In LP, this idea has been used to reuse mem-
ory cells locally in the procedures of Mercury programs [9, 10, 8]. The basic idea
of RBMM is to divide the heap memory used by a program into different regions.

? This work is supported by the project GOA/2003/08 and by FWO Vlaanderen.



2

The dynamically created terms and their subterms have to be distributed over
the regions in such a way that, at a certain point in the execution of the program,
all terms in a region are dead and the whole region can be removed. RBMM is
a topic of intensive research for functional programming languages [16, 1, 4, 15]
and more recently also for imperative languages [3, 2]. For LP languages, there
has been only one attempt to apply RBMM to Prolog [7, 6, 5]. However, the
algorithm for RBMM in [6, 5] was developed for a non-standard implementation
of Prolog which would require substantial changes to have it implemented in
any standard implementation. The authors of [7] fixed the problem by imple-
menting RBMM in the context of a WAM-based Prolog system. Nevertheless,
the work mainly concentrated on the runtime extensions needed by regions to
run Prolog programs with RBMM. It reused a type-based region analysis which
was developed for the functional programming language SML [4] to work with
untyped Prolog, which could lead to poor memory behaviour for large programs
in which type inference for LP obtains imprecise type information. The limited
research on RBMM in LP, therefore, suggests that it is worthwhile to investigate
how a dedicated static region analysis can be developed and implemented in the
context of typed logic programming languages.

Mercury is a pure LP language designed with a native, expressive type sys-
tem, which makes it a natural context for this research. The main contribution
of this paper is an algorithm that augments Mercury programs with region an-
notations. In addition, we have also implemented a region simulator to run the
region-annotated Mercury programs and to evaluate the memory performance
of several benchmark programs. We find that the algorithm can be practically
implemented, and that, with RBMM, the memory savings are very encouraging.

In Section 2, we explain how memory management for Mercury can be based
on the use of regions. The whole algorithm is composed of three phases, which are
described in Sections 3, 4, and 5, respectively. The concept of the region points-
to graph and the points-to analysis are given in Section 3. Section 4 defines the
live region analysis which uses the region points-to graph of each procedure to
precisely detect the lifetime of the regions. We do the transformation by adding
RBMM annotations in Section 5. Section 6 briefly discusses how the presented
algorithm can support Mercury programs with backtracking. The prototype im-
plementation of the algorithm and the experimental results are shown in Section
7. Finally, Section 8 concludes.

2 Regions and Mercury

Mercury programs. We assume that the input of our program analysis is a
Mercury program that has been transformed by the Melbourne Mercury Com-
piler (MMC) into superhomogeneous form, with the goals reordered and each
unification specialised into a construction (<=), a deconstruction (=>), an as-
signment (:=), or a test (==) based on the modes [14]. The qsort program in
this form then consists of the following procedures as shown in Fig. 1.
The use of regions: an example. We illustrate the usefulness of distributing
terms over regions using the qsort example. Memory cells representing a list can



3

main(!IO) :-
(1) L<=[2,1,3],
(2) A<=[],
(3) qsort(L,A,S),
(4) io.write(S, !IO),

qsort(L,A,S) :-
(
(1) L=>[],
(2) S:=A
;
(3) L=>[Le|Ls],
(4) split(Le,Ls,L1,L2),
(5) qsort(L2,A,S2),
(6) A1<=[Le|S2],
(7) qsort(L1,A1,S)
).

split(X,L,L1,L2) :-
(
(1) L=>[],
(2) L1<=[],
(3) L2<=[]
;
(4) L=>[Le|Ls],

(
(5) X>=Le
->
(6) split(X,Ls,L11,L2),
(7) L1<=[Le|L11]
;
(8) split(X,Ls,L1,L21),
(9) L2<=[Le|L21]
)

).

Fig. 1. qsort program in superhomogeneous form.

be divided into cells for the elements and those for the list skeleton. Observing
the memory behaviour of the qsort procedure, we see that the output list has
a new skeleton built up in the accumulator while its elements are those of the
input list. In the main predicate, the input list L is no longer used after the call
to qsort. This means that if the skeleton of the input list, the elements, and the
skeleton of the output list (and the accumulator) are stored in three different
regions we can safely free the memory occupied by the input list’s skeleton by
removing its region after the call. Take a closer look inside the qsort procedure
at (4). The call to split creates two new lists with two new skeletons while the
elements are also those of the input list. Therefore, if the two new skeletons are
stored in regions different from the region of the input list’s skeleton, the region
can even be removed earlier, namely after this call to split inside qsort. So, by
storing different components of the lists in separate regions we can do timely
removal and recover dead memory sooner.

The qsort program with region support produced by our analysis is shown in
Fig. 2 with the region annotations in bold. In analogy to program variables used
to refer to memory cells, in RBMM, we use region variables to refer to (i.e., to
be bound to) physical regions in memory. Two special instructions create and
remove handle the creation and removal of regions. create(R) creates a region,
and makes the region variable R bound to it. R must be unbound before and
be bound after the operation. remove(R) removes the region to which R is
currently bound. R must be bound before and be unbound after the operation.
That region variables can become unbound makes them different from regular
Mercury variables. In a procedure definition, {. . .,Ri,. . .} is the list of formal
region parameters. At a call site of the procedure the caller will provide the actual
region parameters in the usual manner of parameter passing. The information
about which variables are stored in which regions will be given in Fig. 3.

In Fig. 2, assume that in the main procedure, the list L’s skeleton is in the
region (bound to) R1, its elements in R2, and the skeleton of the accumulator
in R3. In the qsort procedure, the region of the skeleton of the list L passed
to qsort from main is removed in the base case branch of split in the call at
(4). The two new skeletons of the lists L1 and L2 are allocated in two separate



4

main(!IO) :-
create(R1), create(R2),
(1) L<=[2,1,3],
create(R3),
(2) A<=[],
(3) qsort(L,A,S){R1,R2,R3},
(4) io.write(S, !IO),
remove(R2), remove(R3).

qsort(L,A,S){R1,R2,R3} :-
(
(1) L=>[],

remove(R1),
(2) S:=A
;
(3) L=>[Le|Ls],
(4) split(Le,Ls,L1,L2){R2,R1,R2,R4,R5},
(5) qsort(L2,A,S2){R5,R2,R3},
(6) A1<=[Le|S2],
(7) qsort(L1,A1,S){R4,R2,R3}
).

split(X,L,L1,L2){R5,R1,R2,R3,R4} :-
(
(1) L=>[],

remove(R1),
create(R3),

(2) L1<=[],
create(R4),

(3) L2<=[]
;
(4) L=>[Le|Ls],

(
(5) X>=Le
− >
(6) split(X,Ls,L11,L2){R5,R1,R2,R3,R4},
(7) L1<=[Le|L11]
;
(8) split(X,Ls,L1,L21){R5,R1,R2,R3,R4},
(9) L2<=[Le|L21]
)

).

Fig. 2. Region-annotated qsort program.

regions. These regions are created by the base case branch of split, and removed
(indirectly) by the calls at (5) and (7). If L1 and L2 are empty lists the removals
will happen in the base case branch of qsort ; otherwise, they will happen in the
base case branch of split. The region of the output list’s skeleton is the region of
the accumulator, which is created in main.

3 Region Points-to Analysis

The goal of this analysis is to build, for each procedure, a region points-to graph
that represents the partitioning into regions of the memory used by the proce-
dure. The concept of a region points-to graph was introduced for Java in [2] and
we adapted it to Mercury.
Region points-to graph. For a procedure p, a region points-to graph, G =
(N,E), consists of a set of nodes, N , representing regions and a set of directed
edges, E, representing references between the regions. Each node has an associ-
ated set of variables of p which are stored in the region represented by the node.
For a node n, its set of variables is denoted by vars(n). The node nX denotes
the node such that X ∈ vars(nX). A directed edge (m, (f, i), n) denotes an edge
from m to n, which is labelled by the type selector (f, i) and represents the
structured relation between the variables in the two nodes. The type selector
(f, i) selects the ith argument of the functor f [8].

The points-to graphs of split and qsort procedures are shown in Fig. 3. For
split, we see that the skeletons of the lists L and Ls are in the same region and
that the list elements are in the region pointed to by the edge labelled by ([|], 1).
The self-edge with the label ([|], 2) is for the skeleton.

The region points-to graph G = (N,E) of a procedure p is compatible if and
only if G satifies the following invariants.

1. If a unification X := Y is in p then X and Y are in the same node.



5

Le
([|],1)

([|],2)

X

([|],2)

([|],1)

([|],1)
([|],2)

(R1) L,Ls (R5)

L2
L21

L1
L11

(R3) (R4)

(R2)

(a) split

S,A

([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

([|],1)

([|],2)

([|],1)
L,Ls Le S2,A1

L2L1(R4)

(R1) (R2) (R3)

(R5)

(b) qsort

Fig. 3. The points-to graphs of split and qsort.

2. If a unification X = f(. . . , Yi, . . .) (i.e., <= or =>) appears in p then
nX , nYi

∈ N , and, for each i, there exists exactly one edge with the label
(f, i) from nX and (nX , (f, i), nYi

) ∈ E.
3. If X is a variable bound to a term, Y is a variable bound to a subterm of

that term and they are of the same type, then they are in the same node.
4. Every variable of p belongs to exactly one node and the variables in a node

have the same type, which is regarded as the type of the node.
5. If p calls a procedure q, then the subgraph of the region points-to graph

of p rooted at the nodes of the actual parameters must be a conservative
approximation of the subgraph of the graph of q rooted at the nodes of the
formal parameters of q.

The fifth invariant includes the effects of procedure calls in the region points-
to graph of p. According to [2], a region points-to graph G = (N,E) is a con-
servative approximation of G′ = (N ′, E′) if there exists a function α : N ′ → N

such that (n, (f, i),m) ∈ E′ implies (α(n), (f, i), α(m)) ∈ E ∀n,m ∈ N ′.
The reason for the third invariant is to ensure that the terms of recursive

type are always stored in a fixed, finite number of regions. For a more thorough
development of this design choice the reader is referred to Section 2.3 in [12].

The task of the region points-to analysis then is to produce a compatible
graph for each procedure in a program. To update a region points-to graph
G = (N,E) the analysis uses two operations unify and edge defined as follows.

– k = unify(n,m): unifies nodes n and m and returns the new node k.
• N ← N \{n,m}∪{k}, k is a new node and vars(k) = vars(n)∪vars(m).
• E ← E where all appearances of m and n are replaced by k.

– edge(n, sel ,m): creates an edge with a label sel from node n to node m.
• G← (N,E ∪ {(n, sel ,m)}).

The region points-to analysis is flow-insensitive (i.e., the execution order of
the literals in a procedure does not matter), and consists of an intraprocedural
analysis and an interprocedural analysis. We will describe them in turn.

3.1 Intraprocedural Analysis

Assume that we are analysing a procedure p. Its region points-to graph G =
(N,E) is computed as follows.



6

1. Each variable in p is assigned to a separate node: for a variable X, nX

becomes a node in N and vars(nX) = {X}.
2. The specialized unifications in p are processed one by one as follows:

– An assignment X := Y : apply unify(nX , nY ) to ensure the first invariant.
– A test X == Y : do nothing.
– A deconstruction X => f(Y1, . . . , Yn) or a construction

X <= f(Y1, . . . , Yn): create the references from nX to each of nY1
, . . .,

nYn
by adding the edges edge(nX , (f, 1), nY1

), . . ., edge(nX , (f, n), nYn
).

3. The rules in Fig. 4 are fired whenever applicable. Rules P1 and P2 are to
ensure the second invariant. Rule P3 enforces the third invariant.

k = unify(n, n
′

)
(k, sel, m) ∈ E

(k, sel, m
′

) ∈ E

m 6= m
′

unify(m, m
′

)
(P1)

edge(n, sel, m)
(n, sel, m

′

) ∈ E

m 6= m
′

unify(m, m
′

)
(P2)

edge(n, sel, m)

(k1, m) ∈ E
+

(m, k2) ∈ E
+

k1 6= k2

type(k1) = type(k2)

unify(k1, k2)
(P3)

E+ is the reflexive, transitive closure of E; type(n) returns the type of node n.

Fig. 4. Intraprocedural analysis rules.

3.2 Interprocedural Analysis

The interprocedural analysis updates the region points-to graph Gp of a pro-
cedure p by integrating the relevant parts of the region points-to graphs of the
called procedures into Gp at each call site. For a call q(Y1, . . . , Yn), the head of
the defining procedure is q(X1, . . . , Xn). The analysis is performed as follows.

1. Process each procedure call q(Y1, . . . , Yn) in p: integrate the graph of q,
Gq = (Nq, Eq), into the graph of p, Gp = (Np, Ep) by building the partial α

mapping from Nq to Np as follows:
(a) Initialize the α mapping with α(nX1

) = nY1
,. . .,α(nXn

) = nYn
. For those

nodes that have been unified in Gq, the corresponding nodes in Gp should
also be unified. This is achieved by applying rule P4 in Fig. 5 to ensure
that α is a function.

(b) In the graph Gq, start from each nXi
, follow each edge once and apply

rules P5 - P8 in Fig. 5 when applicable. Those rules complete the α

mapping and copy the parts of Gq that are relevant to nXi
’s into Gp.

When two nodes of Gp are unified (rules P4 and P5) or an edge is added
to Gp (rules P7 and P8) we need to apply rules P1 or P3 respectively to
Gp in order to maintain the second and the third invariants. (Rule P2 is
never applicable because its conditions cannot be satisfied.)

2. Repeat step 1 until there is no change in Gp.

When the algorithm terminates, i.e., when no rules can be applied and we
reach a fixpoint, the resulting region points-to graphs for the program’s proce-
dures will all be compatible. This is because for each procedure, the analysis
starts with a points-to graph that satisfies the fourth invariant, and no rules
invalidate it. The first invariant is respected by the intraprocedural analysis. If



7

α(nXi
) = nYi

α(nXj
) = nYj

nXi
= nXj

nYi
6= nYj

unify(nYi
, nYj

)
(P4)

(nq, sel, mq) ∈ Eq

α(nq) = np

(np, sel, m
′

p) ∈ Ep

α(mq) = mp 6= m
′

p

unify(mp, m
′

p)
(P5)

(nq, sel, mq) ∈ Eq

α(nq) = np

(np, sel, mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P6)

(nq, sel, mq) ∈ Eq

α(nq) = np

6 ∃k : (np, sel, k) ∈ Ep

α(mq) = mp

edge(np, sel, mp)
(P7)

(nq, sel, mq) ∈ Eq

α(nq) = np

6 ∃k : (np, sel, k) ∈ Ep

α(mq) undefined

mp : a new node in Gp

α(mq) = mp edge(np, sel, mp)

(P8)

Fig. 5. Interprocedural analysis rules.

the second invariant does not hold then rules P1 and P2 must be applied and
also if the third invariant is invalid then rule P3 is applied. Rule P4 ensures that
at a call site an α mapping exists. Then if the fifth invariant does not hold at
least one among the rules P5-P8 must be applicable. The termination of the al-
gorithm can be shown by defining a partial order over the set of region points-to
graphs and showing that the rules are actually monotonic and that there exists
a maximum compatible points-to graph for each procedure. From now on, when
we mention the region points-to graph of a procedure it means the compatible
one obtained after both intra- and inter-procedural analyses.

For the qsort example, the region points-to graphs of split and qsort after
the region points-to analysis are exactly as shown in Fig. 3.

4 Live Region Analysis

Each node in the region points-to graph of a procedure is named by a distinct
region variable. A region variable being live means that it is bound to a physical
region. During the execution of a program the memory cells holding the values
of the variables must be allocated before they are used. Similarly, in RBMM,
regions also need to be created before used, and should be removed when no long
in use. The goal of live region analysis is to detect which region variables are live
at each program point and to decide which regions are created and removed by
each procedure.

We associate a program point with every literal in the body of a procedure
p. An execution path in p is a sequence of program points, such that at runtime
the literals associated with these program points are performed in sequence. We
use the notions “before” and “after” a program point. Before a program point
means the associated literal has not been executed yet, while after a program
point means its literal has just been completed. The set of live region variables at
a program point is computed via the set of live variables at the program point.

4.1 Live Region Variables at a Program Point

Live variables. A variable is live after a program point in a procedure p if:

– There exists an execution path in p containing the program point that in-
stantiates the variable before or at the program point and uses it after the
program point,



8

– OR it is an output variable of p, which is instantiated before or at the
program point.

If we call pre inst(i, P ) the set of variables instantiated before the program
point i in the execution path P , post use(i, P ) the set of variables used after i

in P , out(i) the set of variables instantiated by the goal at i, out(p) the set of
output variables of a procedure p then the set of live variables after i is:

LV after (i) = {V | ∃P : V ∈ (pre inst(i, P ) ∪ out(i)) ∩ (out(p) ∪ post use(i, P ))}.

If we call in(i) the set of input variables to the literal at i, the set of live
variables before i is:

LV before(i) = (LV after (i) \ out(i)) ∪ in(i).

The LV before of the first program point of an execution path of a procedure
p is defined to be in(p), the set of input variables of the procedure. The LV after

of the last program point is defined to be out(p).
Live region variables. A region variable is live at a program point if its node
is reachable from a live variable at the program point.

The set of nodes that are reachable from a variable is defined:
Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:
E∗(X) = {(nX , ni) | ∃(nX , sel0, n1), . . . , (ni−1, seli−1, ni) ∈ E}.

The live region variables sets before and after a program point i are defined:
LRbefore(i) =

⋃
(Reach(X)) ∀X ∈ LV before(i).

LRafter (i) =
⋃

(Reach(X)) ∀X ∈ LV after (i).

4.2 Region Lifetime Across Procedure Boundary

The formal region parameters of a procedure are the region variables that are
reachable from its head variables. For a procedure, we could safely require that
the regions bound to by its formal region parameters are created and removed
only by its callers. But we may achieve better memory use if we can give such
a region a later creation or an earlier removal, or both, inside the procedure. To
reason about this, for a procedure p, we define:

– bornR(p) is the set of region parameters that are bound to regions which are
created inside p, i.e., by p or by one of the procedures it calls.

– deadR(p) is the set of region parameters that are bound to regions which are
removed inside p.

When analysing a procedure p, initially, bornR(p) = outputR(p) \ inputR(p);
deadR(p) = inputR(p) \ outputR(p), where inputR(p) and outputR(p) are the
sets of region variables reachable from input and output variables, respectively.

The analysis then follows each execution path of p and applies the rules in
Fig. 6 to any call q to update the deadR and bornR sets of q. A region variable
is eliminated from deadR(q) if it needs to be live after the call to q in p (i.e., the
region to which it is bound must not be removed in the call to q) (rule L1); or if
the region will be removed more than once by q because of the so-called “region
alias”, which means the same actual region parameter is used for more than one



9

formal region parameter (rule L2). A region variable is excluded from bornR(q)
if the region it is bound to is already live before the call to q (rule L3); or if q

will create the region more than once due to region alias (rule L4). When there
is a change to those sets of q, q needs to be analysed to propagate the change to
its called procedures. Therefore, this analysis requires a fixpoint computation.

r ∈ LRbefore(pp(l))
r ∈ LRafter (pp(l))

r = α(r
′

) r
′

∈ deadR(q)

deadR(q) = deadR(q) \ {r
′

}
(L1)

α(r
′

) = r α(r
′′

) = r

r
′

6= r
′′

r
′

∈ deadR(q)

deadR(q) = deadR(q) \ {r
′

}
(L2)

r ∈ LRbefore(pp(l))
r = α(r

′

) r
′

∈ bornR(q)

bornR(q) = bornR(q) \ {r
′

}
(L3)

α(r
′

) = r α(r
′′

) = r

r
′

6= r
′′

r
′

∈ bornR(q)

bornR(q) = bornR(q) \ {r
′

}
(L4)

pp(l) returns the program point of the literal l.

Fig. 6. Live region analysis rules.

After this analysis, the set of region variables of a procedure, N , is partitioned
into four sets: deadR, bornR, constantR, and localR, where localR = N\(inputR∪
outputR) and constantR = N \ (deadR ∪ bornR ∪ localR). The first three sets
are constituents of the set of region parameters of the procedure. The region
parameters in deadR are live before a call to the procedure and the regions they
are bound to can safely be removed inside the procedure. Those in bornR are
unbound before a call to the procedure and will get bound inside the procedure.
Those in constantR escape the procedure scope. The last set, localR, contains
region variables that are absolutely internal to the procedure.

The algorithm to detect live region variables at each program point is an
extension of live variable analysis, which is a standard, well-known program
analysis [11]. The analysis in Section 4.2 aims to compute a shortest possible
lifetime for a region. Its termination can intuitively be understood from the fact
that each procedure uses a finite set of region variables, hence, initially bornR
and deadR sets are also finite, and the analysis just reduces their size.

In the qsort program, split has three execution paths: 〈(1), (2), (3)〉, 〈(4), (5),
(6), (7)〉, and 〈(4), (8), (9)〉; qsort has two: 〈(1), (2)〉 and 〈(3), (4), (5), (6), (7)〉.
The LV and LR sets of split are in Table 1(a), of qsort in Table 1(b) (see also
Fig. 2 and Fig. 3). Note that, in this example, it happens to occur that the
set after one program point is always equal to the one before the next point in
the same execution path. In general, this is not necessarily the case, consider for
example a split point, the set of live region variables after it is the union of all the
sets before its next points. The region parameter sets of the two procedures are:
deadR(split) = {R1}, bornR(split) = {R3, R4}, constantR(split) = {R2, R5};
deadR(qsort) = {R1}, bornR(qsort) = φ, constantR(qsort) = {R2, R3}.

5 Program Transformation

The main task of program transformation is to annotate the input program with
create and remove instructions based on the region liveness information. It also
annotates a procedure definition with formal region parameters known from the



10

pp LV LR

(1b) {X, L} {R5 , R1 , R2}
(1a, 2b) {} {}
(2a, 3b) {L1} {R3 , R2}

(3a) {L1 , L2} {R3 , R2 , R4}
(4b) {X, L} {R5 , R1 , R2}

(4a, 5b) {X, Le, Ls} {R5 , R2 , R1}
(5a, 6b) {X, Le, Ls} {R5 , R2 , R1}
(6a, 7b) {L2 , Le, L11} {R4 , R2 , R3}

(7a) {L1 , L2} {R3 , R2 , R4}
(5a, 8b) {X, Le, Ls} {R5 , R2 , R1}
(8a, 9b) {L1 , Le, L21} {R4 , R2 , R3}

(9a) {L1 , L2} {R3 , R2 , R4}

(a) split

pp LV LR

(1b) {L, A} {R1 , R2 , R3}
(1a, 2b) {A} {R3 , R2}

(2a) {S} {R3 , R2}
(3b) {L, A} {R1 , R2 , R3}

(3a, 4b) {A, Le, Ls} {R3 , R2 , R1}
(4a, 5b) {A, Le, L1 , L2} {R3 , R2 , R4 , R5}
(5a, 6b) {Le, L1 , S2} {R2 , R4 , R3}
(6a, 7b) {L1 , A1} {R4 , R2 , R3}

(7a) {S} {R3 , R2}

(b) qsort

Table 1. Live variable and live region variable sets in qsort program.

live region analysis. Actual region parameters at a call site can be derived from
the formal region parameters of the called procedure and the α mapping at the
call site.
Correctness conditions. To be correct, the transformation of a procedure p

must ensure the following:

1. If a region variable is live at a program point, it must be bound to a region
before that point.

2. If a region variable is not live at a program point, its binding status must
be unbound before that point.

3. The regions to which the region parameters in deadR(p) are bound will be
removed inside p.

4. The regions to which those in bornR(p) are bound will be created inside p.
5. No creation and removal will occur to those in constantR(p) in the procedure.

Transformation. Each procedure is transformed by following its execution
paths and applying the transformation rules in Fig. 7 to each program point
so that the correctness conditions are respected. Assume that we are analysing
a procedure p. Let li be the associated literal at a program point i in p. A literal
can be either a specialized unification denoted by unif or a call (user-defined
or built-ins). We assume that all the specialized unifications as well as calls to
builtin operations do not remove or create any regions.

When a region variable first becomes live, namely when it is not live before
i but is live after i, a region must be created and the region variable is bound
to the region. If the region is created inside li, then no annotation is added at i.
Otherwise the region is created either by a caller of p or by p itself. The former
means that the region should not be created again in p, hence no annotation is
added at i. The latter occurs when the region variable belongs to either bornR(p)
or localR(p), and in this case we add a create instruction before li. This is
reflected by the transformation rules T1 and T2.

When a region variable ceases to be live, the region it is currently bound
to is removed. The first case is when the region variable is live before i but
not live after i. If p does not remove the region, it is removed by a caller of p



11

li ≡ q(. . .)
r ∈ LRafter (i) \ LRbefore(i)
r ∈ (localR(p) ∪ bornR(p))

6 ∃r
′

: r = α(r
′

) ∧ r
′

6∈ bornR(q)

add “create r” before li
(T1)

li ≡ X <= f(. . .)
r ∈ Reach(X) \ LRbefore(i) r ∈ LRafter (i)

r ∈ localR(p) ∪ bornR(p)

add “create r” before li
(T2)

li ≡ q(. . .)
r ∈ LRbefore(i) \ LRafter (i)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
6 ∃r

′

: r = α(r
′

) ∧ r
′

6∈ deadR(q)

add “remove r” after li
(T3)

li ≡ unif
r ∈ LRbefore(i) \ LRafter (i)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove r” after li
(T4)

lj is right after li in an execution path
r ∈ LRafter (i) \ LRbefore(j)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove r” before lj
(T5)

Fig. 7. Transformation rules.

and no annotation is introduced at i. Otherwise, the region is removed inside p.
This means the region variable is in one of the deadR, localR, or bornR sets of p.
There are two subcases: if li removes the region, then no remove instruction needs
to be inserted at i; otherwise if p removes the region itself, we insert a remove
instruction after li. The transformation rules T3 and T4 ensure this effect. While
the reason for removing a region to which a region variable that belongs to the
first two sets is bound is straightforward, the removal of a region that is bound
to by a region variable in bornR(p) is allowed because it is acceptable for p to
remove the region after i and re-create it later on. The fact that region variable is
in bornR(p) ensures this. The second case is when the region variable is live after
i, but not live before some program point j following i in a certain execution
path. This can happen when i is a shared point among different execution paths
and the region variable is live after i due to an execution path to which j does
not belong. A remove instruction is added before lj to remove the region as
expressed by the transformation rule T5.

The result of the program transformation of the qsort program has been
shown in Fig. 2. The addition of the remove instructions after the first program
points in both qsort and split procedures results from the application of T4. Two
create instructions inserted in the split procedure are effects of T2.

6 Support for Mercury Programs with Backtracking

The region analysis and transformation presented in Sections 3, 4, and 5 are
correct for Mercury programs without backtracking. The region liveness analy-
sis only takes into account forward execution and the transformation assumes
that at runtime a program will follow only one execution path. To support back-
tracking the authors in [5, 7] described an enhanced runtime for Prolog with
RBMM. The idea is to make backtracking transparent to the algorithm for non-
backtracking programs by using a mechanism to undo changes to the region-
based heap memory, restoring it to the previous state at the point to which the
program backtracks. We reused this idea, developed the necessary details (which
can be found in [13]) in the context of the Melbourne implementation of Mer-
cury [14]. With this support, the algorithm for non-backtracking programs can
be used unchanged to correctly support ones with backtracking.



12

7 Prototype Implementation and Experimental Results

We implemented an RBMM prototype using MMC version 0.12.0. It consists of
an analyser that uses the region analysis to generate region-annotated programs
and a region simulator. The analyser operates as one of the last analyses on the
High Level Data Structure representation of the original source code and pro-
duces source code with region support. To have a working Mercury system with
RBMM the runtime system of Mercury would need to be extended with support
for regions, which is out of the scope of this paper. Instead, we developed a
region simulator to experiment with region-annotated programs. The simulator
can mimic the region operations in a region-annotated Mercury program as if
the program were being executed by a working RBMM system. The simulator
provides an interface with non-logical methods for region creation, removal, allo-
cation into a region, and for supporting backtracking (see [13] for more details).

The program transformation emits a program (as valid Mercury code) in
which create instructions are replaced by calls to the method for region creation
in the simulator’s interface and remove instructions by calls to the region re-
moval method. After each construction a call to the region allocation method is
added to collect the number of words allocated. Procedure definitions and calls
are extended with region parameters as extra parameters. Calls to backtrack-
supporting methods are inserted at suitable places. We also augment the Mercury
runtime system to interact with the simulator so that the saving and restoration
of region-based memory states can be imitated correctly.

Primitive types are not dealt with specially by the analyser, but they are by
the simulator. In particular, when dealing with a list of integers, the integers
themselves are not put in a separate region but stored in the first words of the
cons cells needed for the list skeleton.

When a Mercury program is executed it puts the terms that are created
during execution on the heap. Assume that no RTGC is used, during forward
execution the heap grows and only on backtracking instant reclaiming is done.
With RBMM the terms will be put into regions and the regions can be freed
(and reused) during the forward run of the program. In particular, it should be
the case that temporary data is in regions which are freed as soon as the data
is no longer needed.

In our experiments, we have included some deterministic programs that use
some temporary data: nrev reverses a list of 5000 integers, qsort sorts a list of
100000 integers and primes finds all the primes less than 100; dnamatch and
life are known to be difficult cases for region analysers. Two non-deterministic
programs are used: 9-queens program that first generates a permutation and
then checks, and crypt that finds the unique answer to a cryptoarithmetic puz-
zle1. The experiments allow us to measure the memory used by the benchmarks.

Table 2 shows the experimental results obtained by the region simulator for
the annotated versions of the benchmarks. The experiments were done on a PC

1
The original and annotated source code of the benchmark programs can be found at

http://www.cs.kuleuven.be/∼quan/benchmarks.tar.gz



13

with a 2.8 GHz Pentium 4 CPU, 512 MB of RAM running Debian GNU/Linux
3.1, under a usual load.

nrev qsort prime dnamatch rdnamatch life rlife crypt queens

TR 5,002 200,002 29 2,082,005 2,083,005 50,303 50,403 418 7,689
MR 2 21 3 8 9 102 102 4 4
TW 25,015,000 5,865,744 916 18,537,685 18,541,685 894,336 894,336 3,442 159,234
MW 10,000 200,000 194 4,201,700 113,792 8,208 1,068 62 78
SLR 10,000 200,000 194 4,096,000 64,000 6,486 390 32 60
S (%) 99.96 96.59 78.82 77.33 99.39 99.08 99.88 98.20 99.95
AT (ms) 8 11 9 72 78 107 n/a 61 13
CT (ms) 251 243 223 329 343 361 n/a 307 273

Table 2. Experimental results.

Our measurements reported in Table 2 are: the total number of regions cre-
ated during the execution of a benchmark (TR), the maximum number of re-
gions coexisting during its run (MR), the total number of words allocated (TW),
the maximum number of words that coexist (MW), and the size in words of the
largest region (SLR). Then savings (S) can be computed as (TW-MW)/TW. We
also give the times in milliseconds taken by our analysis (AT) and by the usual
Mercury compilation of the benchmark (CT). For all benchmarks the analysis
time is only a fraction of the compilation time.

The fact that TR is much larger than MR confirms that the data used by a
program can indeed be divided into regions that can be freed timely during its
execution. If Mercury runs the programs without memory management, it will
actually need TW words. When using RBMM only MW are needed. The savings
are impressive, about 92% on average. The large savings can partly be explained
by the fact that the analysis did a good job of partitioning the heap into regions
such that temporary data can be freed in a timely manner. Optimal memory
management is achieved for nrev, qsort and prime, as the programs use no
more memory than what is needed to store their input data. In a standard LP
system, all memory management in crypt and queens will be handled well by
instant reclaiming because backtracking happens very frequently. The savings
with RBMM in these two benchmarks are with respect to the situation where
instant reclaiming is not used therefore seem to be unfair. However, they show
that the runtime support for backtracking can also provide the ability of instant
reclaiming in the context of RBMM.

In dnamatch and life, while the savings seem acceptable, the memory man-
agement is actually suboptimal. In these programs, there is a region that exists
for almost the whole runtime and contains all the temporary and final values
of the computation of the programs’ output, which make up a significant part
of the maximum number of words used. This undesirable performance is due to
the fact that the present algorithm fails to split temporary values from the final
outputs in these programs. A well-known solution to this problem is to make
such programs region-friendly by rewriting after studying their RBMM-related
behaviour [16, 1, 4, 7]. rdnamatch is a region-friendly version of dnamatch,
achieved by adding an extra predicate to copy the temporary values into re-
gions different from the region of the final output. An orthogonal solution is
to enhance the static analysis: rlife, a manually adapted version of the region-



14

annotated life, illustrates the effect of such a possible improvement. Their data
show a large reduction in the maximum number of words needed. The latter
solution is more preferable because it is entirely automated, hence freeing logic
programmers from caring about memory management tasks. Moreover, the first
solution requires extra time and memory for copying, while the second solution
requires the same total number of words as before but the region analysis can
distribute them more cleverly. We are working further in this direction.

Three of our benchmarks, nrev, qsort, and dnamatch, were also reported
in [7] with the same inputs. We achieve optimal memory use in nrev and qsort,
while in [7] the former was reported using maximally double and the latter 1.66
times the memory size of the input list. For dnamatch, we gain a saving of
77.33% compared to 33.5% shown in [7]. The reason for the better results is
probably that our algorithm can remove a region earlier. For example, in the
qsort procedure of the qsort program, the inference in [7] removes the region of
the input list after the call to split (so the list and the two sublists are live at
that point). In our case, that removal happens at the base case in the call to
split , before creating the two sublists.

8 Conclusion

In this paper we have developed a region analysis algorithm for the typed logic
programming language Mercury. Our approach was inspired by the work in [2].
The analyses in [2] take into account the data flow in a program in order to deter-
mine the regions and their lifetimes. Therefore the analyses had to be redefined
for Mercury to deal with unification and a control flow which are fundamentally
different from object manipulation and control flow in Java. Type information
in Mercury has been exploited by the region analysis to achieve a finite region
representation for recursive structures. Apart from that our algorithm allows
interprocedural creation of regions which was not handled in [2]. The analyser
annotates Mercury programs with instructions for RBMM. Experiments with
the analyser for several small benchmarks (4-17 procedures, 70-500 lines of code)
show that it takes a reasonable amount of time. We also implemented a region
simulator which can run the annotated programs produced by the region anal-
yser to imitate the effects of executing Mercury programs in an RBMM system.
The memory use results of the benchmarks are positive, in some programs we ob-
tain optimal memory consumption. This indicates that our method could be an
interesting alternative memory management technique. It should be noted that
the experiments have been done only with small programs and that the lack of
the completely implemented runtime supporting for RBMM makes us unable
to measure runtime performance and the internal cost of the region allocator
and to provide a thorough comparison between our approach and other memory
management techniques available in Mercury, such as RTGC and CTGC. We
are working on integrating the presented algorithm into the MMC and hope to
lift this limitation soon.

We have not provided a formal proof for the whole algorithm and left it as
future work. However, the foundations for the correctness of the algorithm have



15

been laid intuitively. Finally, we also would like to investigate some extensions
to the presented algorithm: better region partition as mentioned in Section 7
and modular region analysis.

9 Acknowledgements

We would like to thank Zoltan Somogyi for his helpful comments on various
parts of this work.

References

[1] A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: Im-
proving region-based analysis of higher-order languages. In Proceedings of the
ACM SIGPLAN 1995 Conference on Programming Language Design and Imple-
mentation, pages 174–185. ACM Press, 1995.

[2] S. Cherem and R. Rugina. Region analysis and transformation for Java pro-
grams. In Proceedings of the 4th International Symposium on Memory Manage-
ment, pages 85–96. ACM Press., Oct. 2004.

[3] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In Proceedings of the ACM Conference
on Programming Language Design and Implementation., pages 282–293. ACM
Press., 2002.

[4] F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow sensitive
region-based memory management. In Principles and Practice of Declarative
Programming., pages 175–186. ACM Press., 2001.

[5] H. Makholm. A region-based memory manager for Prolog. In Proceedings of
the 2nd International Symposium on Memory Management, pages 25–34. ACM
Press., 2000.

[6] H. Makholm. Region-based memory management in Prolog. Master’s thesis,
University of Copenhagen, 2000.

[7] H. Makholm and K. Sagonas. On enabling the WAM with region support. In
Proceedings of the 18th International Conference on Logic Programming. Springer
Verlag., 2002.

[8] N. Mazur. Compile-time garbage collection for the declarative language Mercury.
PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven,
May 2004.

[9] N. Mazur, G. Janssens, and M. Bruynooghe. A module based analysis for memory
reuse in Mercury. In Proceedings of Computational Logic, volume 1861 of Lecture
Notes in Artificial Intelligence, pages 1255–1269. Springer-Verlag, 2000.

[10] N. Mazur, P. Ross, G. Janssens, and M. Bruynooghe. Practical aspects for a
working compile time garbage collection system for Mercury. In Proceedings of
the 17th International Conference on Logic Programming, volume 2237 of Lecture
Notes in Computer Science, pages 105–119. Springer, 2001.

[11] F. Nielson, H. R. Nielson, and C. Hankin. The Principles of Program Analysis.
Springer, 1999.

[12] Q. Phan and G. Janssens. Towards region-based memory management for Mer-
cury programs. In CICLOPS, 2006.

[13] Q. Phan and G. Janssens. A proposal for runtime region support for Mercury pro-
grams. Technical Report CW482, Department of Computer Science, Katholieke
Universiteit Leuven, 2007.

[14] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. The Journal of Logic
Programming, 29(1-3):17–64, October-December 1996.

[15] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17:245–
265, 2004.

[16] M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation., 132(2):109–176, Feb. 1997.


