
Automatic Parallelisation in Mercury

Paul Bone pbone@csse.unimelb.edu.au

January 19, 2010

Mercury

◮ Mercury is a declarative, pure language.

◮ Purity makes programming more reliable.

◮ Purity also makes it easier for the compiler to optimise code,
including automatic parallel evaluation.

◮ Over 15 years old, and has been self-hosted for most of
this time.

◮ The compiler has 425,674 LoC, excluding the standard
library and runtime, yet our daily snapshots are usually
stable!

◮ Can compile to C, Java, Erlang and MS IL.

◮ Named after the Roman god of speed.

The problem

Parallel programming is hard, but multicore systems are ubiquitous.

◮ Thread synchronisation is very hard, but purity makes this a
non-issue.

◮ Working out how to parallelise a program can be difficult.

◮ What if the program changes in the future? The programmer
may have to re-parallelise it.

This makes parallel programming time consuming and expensive.
Yet in a multicore era it is desirable to parallelise most programs.

Automatically Parallelising a program

◮ Profile the program to find the expensive parts.

◮ Analyse the program to determine what can be run in parallel.

◮ Determine if it is profitable to introduce parallel evaluation.
This may involve trial and error.

◮ Repeat until the program runs fast enough or there is nothing
left to parallelise.

source compile profile analyse feedback

compile result

Benchmarks — ICFP 2000 Raytracer

◮ Heavy garbage collector
usage

◮ 6,199 LoC.

◮ Code was altered to make it
less stateful.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

S

P = 1

P = 2

P = 3

P = 4

123

125

112

103

98

Elapsed time (seconds)

Benchmarks — Mandelbrot image generator

◮ Light garbage collector usage

◮ 280 LoC.

◮ Written for this test.

0 20 40 60 80 100 120 140

S

P = 1

P = 2

P = 3

P = 4

139

135

68

45

34

Elapsed time (seconds)

Trickier cases — Divide and Conquer

quicksort([]) = [].

quicksort([P | Unsorted]) = Sorted :-

(Bigs, Littles) = partition(P, Unsorted),

(

SortedBigs = quicksort(Bigs) &

SortedLittles = quicksort(Littles)

),

Sorted = SortedLittles ++ [P | SortedBigs].

Trickier cases — Divide and Conquer

On average, this creates O(N) small parallel tasks. This is far too
many since most systems have far fewer than N cores.

Task 1

Task 2

Task 3 Task 4

Task 5 Task 6 Task 7 Task 8

Trickier cases — Divide and Conquer

It is much better to parallelise the first O(log2P) levels of the tree.

Task 1

Task 2

Tricker cases — Specialisation

foo clo is expensive and we can parallelise list.map to speed up
foo. But bar clo is simple and fast, parallelising list.map would
slow it down.

foo bar

list.map

foo clo bar clo

Tricker cases — Specialisation

Make a copy of list.map and parallelise that, re-write foo so it
calls the new copy of list.map.

Our profiler can collect the necessary information to make these
decisions.

foo bar

par map list.map

foo clo bar clo

Conclusion

◮ Parallel garbage collection is an active research area.

◮ Many other optimisations are being developed to make
automatic parallelisation useful for a wider range of programs.

◮ Pure, declarative languages make parallelism easier.

◮ Automatic parallelisation will make it easy for developers to
take advantage of multicore systems.

Questions?

Questions?

	Mercury
	Motivation and Background
	Automatically Parallelising a program
	Benchmarks
	Trickier cases
	Solution
	Status
	Questions?

