
Practical Declarative Debugging of Mercury Programs

Ian Douglas MacLarty

A thesis submitted to the University of Melbourne in accordance with the
requirements of the degree of Masters by Research in the Faculty of Engi-

neering and the Department of Computer Science.

July 2005

Abstract

Debugging is the most unpredictable and potentially expensive phase of the software de-

velopment life-cycle. Declarative debuggers ask the user questions about the correctness

of subcomputations in their program. Based on the user’s answers, subcomputations that

cannot be the cause of the buggy behaviour are eliminated. Eventually one subcomputa-

tion is left which must be the cause of the buggy behaviour. Declarative debuggers thus

keep track of which parts of the computation are still suspect, relieving the user of the

burden of having to do so. They also direct the bug search, something that many users

(especially novices) would find difficult to do manually. Even expert users often find it hard

to explore large search spaces systematically, a limitation that does not apply to software

systems. Declarative debuggers thus have the potential to make the debugging process

easier and much more predictable.

Despite these expected benefits, declarative debugging is not yet widely used in practice

to find real bugs. There are three main reasons for this:

1. Most previous declarative debuggers only support a subset of the features of their

target language that is not sufficient to express real programs.

2. Previous declarative debuggers do not scale well when applied to problems with large

search spaces.

3. Previous declarative debuggers do not do enough to make the questions easier for

the user to answer.

The declarative nature of Mercury makes it relatively easy to implement a declarative

debugger that can handle the full language. The version of the Mercury declarative de-

bugger that was the starting point for this thesis already handled almost all of Mercury.

By extending it to handle exceptions we made it handle the full language

One problem posed by large search spaces is that they cannot be stored in memory all

at once. This requires only portions of the search space to be stored in memory at any one

time, materializing missing pieces when they are needed by reexecuting the program. We

present the first algorithm for controlling this rematerialization process that is practical in

the presence of multiple search strategies, minimising reexecutions while keeping memory

consumption within acceptable limits.

Another problem with large search spaces is that previous search strategies either asked

far too many questions, demanded too much in the way of CPU and/or memory resources

i

or were too inflexible to coexist with other search strategies. For example, the divide-and-

query search strategy is query-optimal in the worst case, however previous implementations

of it often required more memory than is typically available. We have implemented heuris-

tics which enable divide-and-query to be used on partially materialized search spaces,

making it practical.

We also address the third problem, namely the problem of reducing the complexity

of the debugger’s queries. The new declarative debugger allows users to specify exactly

which part of an atom is wrong. The subterm dependency tracking strategy exploits this

extra information to jump directly to the part of the program that computed the wrong

subterm. In many cases, only a few such jumps are required to arrive at the bug. Subterm

dependency tracking can converge on the bug even more quickly than divide-and-query,

and it tends to yield questions and question sequences that are easier for users to answer.

We also support a variety of other methods of making questions easier to answer.

By trusting some predicates the user can automate answers to all questions about those

predicates (implementing this capability, especially in the presence of higher order code, is

trickier than it seems). We also support a novel technique that allows custom visualisations

of terms to be easily created. If a call fails a precondition then neither ‘yes’ or ‘no’ is

an appropriate answer to a question from the debugger about the validity of an answer

computed for that call. Our debugger therefore allows users to answer ‘inadmissible’ to

such questions. If all else fails, users can also skip hard questions.

We give evidence that the new declarative debugger can be used on complex, real world

programs by presenting several case studies of real bugs found in real programs with the

aid of the debugger.

ii

Declaration

I certify that

1. other than as specified in the preface, this thesis comprises my original work;

2. due acknowledgment has been made in the text to all other material used;

3. the thesis consists of approximately 35 000 words, exclusive of tables, maps, bibli-

ographies and footnotes.

Signature:

Ian MacLarty

iii

Acknowledgments

I would like to sincerely thank my supervisor, Zoltan Somogyi, for all his help and encour-

agement.

I would also like to thank Mark Brown for carrying me to the ambulance, Julien Fischer

for his help on many seperate occasions and Ralph Becket for eh, well, just thanks.

The entire Mercury group also deserve special thanks for all the bugs they have intro-

duced into the Mercury compiler. Without these I wouldn’t have had much of a thesis.

Thanks also to Lee Naish and Bernie Pope for many stimulating discussions.

iv

Contents

Preface xi

1 Introduction 1

2 Background 6

2.1 Mercury . 6

2.1.1 Types, modes and determinisms . 6

2.1.2 Input and Output . 9

2.1.3 Exceptions . 10

2.1.4 Higher order terms . 12

2.1.5 Extra terminology . 12

2.2 The Mercury procedural debugger . 13

2.3 The Mercury declarative debugger . 15

2.3.1 The analysis algorithm . 16

2.3.2 The evaluation dependency tree . 19

2.3.3 The annotated trace . 32

2.3.4 Handling exceptions . 38

2.4 The relationship between the procedural and declarative debuggers 41

3 Usability features 43

3.1 Inadmissibility . 43

3.2 Trusted predicates . 45

3.3 ‘Don’t know’ answers . 47

3.4 Visualising terms . 48

3.5 Handling I/O . 52

v

4 Search Strategies 58

4.1 Top-down search . 58

4.1.1 Variations on top-down search . 59

4.2 Divide-and-query . 59

4.2.1 Overview . 59

4.2.2 Calculating the weight of a subtree 61

4.2.3 Related work . 69

4.3 Subterm dependency tracking . 69

4.3.1 A short example . 71

4.3.2 The subterm tracking algorithm . 72

4.3.3 Tracking a subterm through higher order calls 79

4.3.4 Using incorrect subterm information 81

4.3.5 Related work . 82

5 Resource considerations 85

5.1 An overview of the events gathering

mechanism . 86

5.2 Limiting the depth by a predefined

constant . 88

5.3 Estimating the ideal depth . 89

5.4 A better approximation . 98

5.5 Calculating the ideal depth . 101

5.6 Related work . 103

6 Case studies 109

6.1 Case study 1: A bug in the Mercury

compiler . 109

6.1.1 Using subterm dependency tracking 112

6.1.2 Using divide-and-query . 116

6.2 Case study 2: A bug in the termination

analyser . 117

6.3 Case study 3: Debugging the debugger . 119

7 Future work 121

7.1 Search strategy improvements . 121

vi

7.2 Improving resource consumption . 122

7.3 Making questions easier to answer . 125

7.4 Handling destructive update . 126

7.5 Impure code . 126

8 Conclusion 128

vii

List of Figures

2.1 Naish’s top-down debugger. 16

2.2 Our debugger. 17

2.3 The EDT for a succeeded call to common element 23

2.4 The EDT for a failed call to common element. 23

2.5 Example program fragment with an if-then-else, disjunction and negation. 24

2.6 Execution trace of a call to danger. 25

2.7 The raw EDT for the exit node at event number 20. 30

2.8 The raw EDT for the fail node at event number 27. 30

2.9 The EDT for the exit node at event number 20. 31

2.10 The EDT for the fail node at event number 27. 31

2.11 Algorithm for stepping to the previous event in a stratum. 34

2.12 Algorithm for stepping to the left in the current contour. 35

2.13 An example contour and stratum. 36

2.14 Algorithm for stepping through the contours leading up to an exception

which was possibly thrown in a negated context. 40

3.1 Example interactive term browser session. 49

3.2 A 234 tree rendered as an HTML table of key/value pairs. 52

3.3 The generic graphical term browser showing one of the data structures used

by the Mercury compiler. 53

3.4 A buggy program fragment that performs I/O. 55

3.5 Finding a bug in the presence of I/O. 56

4.1 Algorithm for finding the middle weight node in an EDT. 60

4.2 The potential EDT after q has produced one solution. 62

4.3 The potential EDT after q has produced two solutions. 63

4.4 Scenario 1, q produces another solution. 63

viii

4.5 Scenario 2, q fails. 64

4.6 Example program fragment used to compare the biased weighting metric

with the usual weighting metric. 67

4.7 Debugging session using the traditional weighting metric. 68

4.8 Debugging session using the biased weighting metric. 68

4.9 The origin function. 75

4.10 The track function. 78

5.1 Algorithm for building the annotated trace to a predefined depth limit. . . 87

5.2 Algorithm for building the annotated trace and recording the maximum

depth of each implicit subtree. 90

5.3 The shape of the trees produced by “smallbig” and “bigsmall”. 93

5.4 Approximating “smallbig” and “bigsmall” using the average depth of events

in the tree. 98

5.5 Algorithm for building the annotated trace and calculating the ideal depth

of each implicit subtree. 103

5.6 Query distance of nodes from the root node 107

ix

List of Tables

5.1 Total events in the search space for each benchmark. 93

5.2 “fib” using the average branching factor. 94

5.3 “stick” using the average branching factor. 94

5.4 “smallbig” using the average branching factor. 94

5.5 “bigsmall” using the average branching factor. 95

5.6 The Mercury compiler using the average branching factor. 95

5.7 “smallbig” individual re-executions using the average branching factor. . . 96

5.8 “bigsmall” individual re-executions using the average branching factor. . . 97

5.9 “fib” using the biased branching factor. 99

5.10 “stick” using the biased branching factor. 99

5.11 “smallbig” using the biased branching factor. 100

5.12 “bigsmall” using the biased branching factor. 100

5.13 The Mercury compiler using the biased branching factor. 100

5.14 “smallbig” individual re-executions using the biased branching factor. . . . 101

5.15 “fib” using the calculated ideal depth. 104

5.16 “stick” using the calculated ideal depth. 104

5.17 “smallbig” using the calculated ideal depth. 105

5.18 “bigsmall” using the calculated ideal depth. 105

5.19 The Mercury compiler using the calculated ideal depth. 106

5.20 The Mercury compiler with a bigger source file. 106

5.21 “bigsmall” individual re-executions using the calculated ideal depth. 107

x

Preface

This thesis comprises eight chapters of which the first and last are an introduction and

conclusion.

Chapter 2 gives the background necessary for the rest of the thesis. Sections 2.1, 2.2

and 2.1.3 give overviews of the Mercury language, the Mercury procedural debugger and

exceptions in Mercury. Parts of section 2.3, specifically sections 2.3.2 and 2.3.3, are based

on a design by Mark Brown and Zoltan Somogyi [4]. In those sections, the idea of excluding

exit nodes which produce no output and negs nodes is mine. The analysis algorithm in

section 2.3.1 is my work. Section 2.3.4 is based on previous work done by Mark Brown,

though the handling of try and try all is my work. In section 2.4, the idea of being able

to resume a declarative debugging session from the procedural debugger is mine.

Chapter 3 describes the features of the debugger which make it easier to use. The

implementations of inadmissibility, trusted predicates and term visualisation are mine. The

idea of inadmissibility is based on [33]. I/O tabling was implemented by Zoltan Somogyi

[46], before I started my thesis.

Chapter 4 describes the search strategies implemented for the Mercury declarative

debugger. The top-down search is from the previous version of the debugger which was

implemented by Mark Brown and Zoltan Somogyi. Sections 4.2 and 4.3 are an expanded

version of [27]. The ideas presented in section 4.2 are all mine. In section 4.3, Zoltan

Somogyi implemented the original algorithm for determining the origin of a subterm within

a call before I started my thesis. I extended the implementation to track subterms between

calls including higher order calls.

Chapter 5 presents a new method for controlling the memory consumption and execu-

tion time of the debugger. That chapter is all my original work.

Chapter 6 gives examples of the debugger being used on real programs. Case studies

1 and 3 are based on my own experiences, while case study 2 is based on a bug found by

Julien Fischer.

xi

Chapter 7 explores future research opportunities.

xii

Chapter 1

Introduction

Almost all software contains bugs. These are defects in the software which cause it to

behave in a manner other than intended. Failures caused by bugs can be benign (such as

a character printing in the wrong colour) or they can be catastrophic and cost hundreds

of millions of dollars (for an example see [2]).

There are numerous ways to reduce the number of bugs in a software system. Applying

sound software engineering practices, such as code reviews and thorough testing certainly

helps reduce the number of bugs in a system as do applying good design principles such as

data abstraction. Formal verification can be used to prove mathematically that a program

will do what its specification says. However there is no guarantee that the specification

isn’t buggy or that the proof is error free. Indeed, a formal specification may not even be

available. Ultimately all software is specified and written by human beings, not perfect

beings.

Locating a bug is often the most frustrating and unpredictable task in the software

development cycle. To save time and money, programmers need to locate defects in their

programs once a symptom is observed as quickly as possible (a symptom is some form of

incorrect behaviour of the program). For small programs, simply reading through the code

with a critical eye can often reveal the bug. For large pieces of software, developed by

teams of programmers, this approach becomes impractical.

One method often used is to augment the code with extra statements which log the

values of variables at points of interest (so called “printf” debugging). This approach can

be very time consuming as the program must be recompiled and reexecuted each time the

programmer wishes to observe a different aspect of the state of the program. The extra

statements also make the program less readable and may actually change the behaviour of

1

the program, masking the effects of the defect being sought. The introduced statements

could also be buggy themselves. There is also the added risk that the programmer forgets

to remove logging statements before releasing the software.

Numerous tools have been developed that try to address this problem. These tools can

aid the programmer in their debugging task, without them having to change the source

code. Such tools are generally referred to as debuggers.

Tracing debuggers allow the programmer to view the state of the program at any point

during its execution and quickly jump to a point of interest, or skip parts of the execution

which are not of interest. Some debuggers also allow the programmer to run the program

backwards, which is useful for tracking the cause of a symptom (for example [9, 23]).

Even with the aid of such tools, debugging can be an extremely difficult endeavour.

This is because the user of the debugger must direct the bug search manually — the user

looks for the bug by examining the state of the program at various points in its execution,

and the debugger merely facilitates this activity. The user can only do this effectively if

they have some idea of where the bug might be. Recent debuggers can tell the user why a

program behaved in a certain manner (for example [54]), or can track where the value of

a variable came from (for example [50]). However, because the user never communicates

to the debugger which subcomputations are wrong and which are right, the debugger can

only show the user what the program is doing, and not where the bug is.

Another class of debuggers, called declarative or algorithmic debuggers take a different

approach. Instead of the user directing the bug search by telling the debugger what parts

of the execution they would like to see next, declarative debuggers try to automate most

of the reasoning behind the bug search.

The scientific method of finding a bug is to formulate an hypothesis, test the hypothesis,

and then formulate a new hypothesis based on the validity of the previous hypothesis. Each

hypothesis reduces the set of possible causes of the bug symptom. Eventually there is only

one explanation left, so it must be the cause of the bug symptom.

Declarative debuggers automate the scientific method. The hypothesis formed is about

the correctness of a subcomputation in the buggy program. The hypothesis is tested by

consulting an oracle, typically the user. If the oracle asserts that the subcomputation is

correct, then the bug must be in a subcomputation in the program outside the subcompu-

tation the hypothesis was about, so the next hypothesis is about the correctness of a sub-

computation outside the subcomputation the previous hypothesis was about. If the oracle

asserts that the subcomputation is incorrect, then the bug must be in the subcomputation

2

the hypothesis was about or one of its (direct or indirect) descendant subcomputations,

so the next hypothesis is about one of these. Eventually only one subcomputation is left.

This must be the bug.

The ability of a declarative debuggers to remember which subcomputations are correct

and which are incorrect and use this information to isolate the bug is what distinguishes

them from other types of debugging tools.

Since the scientific method is guaranteed to find the bug if the hypothesis test is reliable,

declarative debuggers have the potential to make the bug location task more predictable

and therefore cheaper in terms of time and money.

The original declarative debugging method was proposed by Shapiro [45]. Shapiro’s

debugger is written for the pure subset of Prolog, but its ideas are applicable to general

programming. Ferrand [15] studied its application to definite logic programs, while Lloyd

[24] presented a declarative debugger for general logic programs with negation.

Most of this early work tended to be only of theoretical interest. This may in part be

due to the fact that most early declarative debuggers were for Prolog (examples include

[15, 24, 40, 45]). and they had no or very limited support for the impure features of Prolog,

such as the cut operator and side effects. Consequently they could not be used to debug

realistic programs.

Algorithmic debugging has also been applied to imperative languages (most notably

[16]), although current implementations only work on toy examples.

Recently progress has been made in developing declarative debuggers that can be used

on realistic Haskell programs (for example [35, 43, 49]). This progress is in part due to

Haskell’s clean declarative semantics, although non-strict evaluation proved a challenge

and most of that research is concerned with overcoming this hurdle.

Another reason some previous declarative debuggers fall short when applied to realistic

problems, is the lack of complex programs written in the programming languages targeted

by these debuggers. (For example virtually no large Prolog programs are written in the

pure subset of Prolog.) Most of the test cases presented are manufactured and are only

useful for testing or demonstrating the debugger.

Debugging is an extremely complex problem. The insight which can be gained from a

purely theoretical analysis is very limited. The most valuable lessons are learnt by applying

declarative debugging to complex, real-world programs. That is what this research aims

to do.

Mercury is a purely declarative logic and functional programming language intended

3

to support the creation of large, reliable programs.

Mercury is an attractive target for an investigation into practical declarative debugging

because its clean declarative semantics mean it is amenable to declarative debugging. In

Mercury, the operational semantics are also much more closely coupled with the declarative

semantics. This makes it much easier to implement a declarative debugger for Mercury,

than it would be for a non-strict language, such as Haskell.

An essential part of any practical investigation must involve trying out the debugger

on real bugs in complex programs. We have a large Mercury program on which to test the

declarative debugger, namely the Mercury compiler itself. This is a Mercury program of

approximately 300 000 lines of code. It is over ten years old and under continual devel-

opment. This means we have a good supply of real bugs on which to test the declarative

debugger, which is important for a practical study. Using the declarative debugger on the

Mercury compiler has led to most of the innovations in this thesis.

The effectiveness of declarative debuggers, like other debugging tools, is measured by

how long it takes to find a bug with their help. One obvious objective when designing the

declarative debugger is therefore to minimize the number of questions asked of the user.

The fewer questions the user needs to answer, the sooner the bug is found. Reducing the

number of questions has been the focus of much past research (for example [13, 16, 19, 28,

39, 40, 45]). However most of the techniques in the literature result in poor performance

when applied to large search spaces because they require a representation of the search

space to be resident in memory. This is infeasible if the search space is large.

The time required to find the bug is the product of the number of questions asked and

the average time required to answer each question. Making the questions asked by the

declarative debugger easier to answer is therefore as, if not more, important than reducing

the total number of questions. The focus of this research is on implementing techniques to

reduce both the number of and the complexity of the debugger’s questions.

The remainder of this thesis is divided up as follows.

In chapter 2 we give the background which will be needed for the rest of the thesis.

We introduce the Mercury programming language, followed by an overview of the Mercury

procedural debugger. We then describe the design of the Mercury declarative debugger.

In chapter 3 we describe some of the usability features of the declarative debugger

which make it practical to use on realistic programs. Most real programs perform I/O, so

our debugger includes support for debugging code which performs I/O. In some cases the

user may not always know what a part of their program is supposed to do, we therefore

4

also allow them to answer ‘don’t know’ to questions from the debugger. The debugger

can also be told to trust certain predicates. This results in fewer questions, since the

declarative debugger will not ask questions about trusted predicates. The debugger also

includes a novel approach to creating custom visualisations of data terms appearing in

questions. The user may also assert that certain questions are ‘inadmissible’ which means

the subcomputation the question is about is neither correct nor incorrect, but instead

should never have occurred in the first place.

The most important part of the declarative debugger is the search strategy. The search

strategy is used to decide what question to next ask the user. Ideally, the questions asked

should be simple and there should be as few of them as possible so that the total time to

find the bug is minimised.

The previous implementations of the most promising query minimisation strategies in

the literature, namely divide-and-query (first proposed by Shapiro [45]) and subterm de-

pendency tracking (first proposed by Pereira [40]), cannot easily be applied to long running

programs which generate large search spaces. In chapter 4 we present an approximation

to Shapiro’s divide-and-query algorithm that is efficient, even if the search space contains

hundreds of millions of subcomputations. This approximation is accurate enough to yield

good results. Subterm dependency tracking allows the user to tell the declarative debugger

exactly which part of an incorrectly computed value is incorrect. The debugger can use this

information to reduce dramatically the number and complexity of the questions it asks.

In chapter 5 we present a new approach to controlling the resources consumed by the

debugger.

In chapter 6 we give several examples of real bugs in the Mercury compiler as well as

in the declarative debugger itself, that were found using the declarative debugger. The

examples also suggest new areas for future research. These are explored in chapter 7.

All the ideas presented in this thesis are implemented in the latest version of the Mercury

declarative debugger, which is distributed with the Mercury system and is available for

download from http://www.cs.mu.oz.au/mercury/. The Mercury User’s Guide is available

from the same site. It documents all the features of the declarative debugger and how to

use them.

5

Chapter 2

Background

2.1 Mercury

Mercury [48] has its roots in logic programming. Its syntax looks like the syntax of Prolog.

However, programming in Mercury feels different from programming in Prolog. One reason

is that unlike Prolog, Mercury is purely declarative. Another is that Mercury’s design

objective is to support teams of programmers building large, reliable software systems, and

thus the Mercury compiler insists on knowing a lot more information about the program.

This includes information about types, modes and determinisms.

2.1.1 Types, modes and determinisms

Mercury has a Hindley-Milner type system very similar to Haskell’s. A type restricts the set

of function symbols a value of the type can have. Each function symbol has an arity which

determines how many arguments the function symbol can have. The type declaration also

gives the types of these arguments. There are four builtin types: ‘int’ for integers, ‘float’

for double precision floating point numbers, ‘string’ for character strings and ‘char’ for

single characters. Polymorphic types are defined using type variables.

Here is an example type declaration.

:- type account

---> savings(float)

; cheque(float, float).

Values of the type account can have the function symbol savings with one floating

point argument (the argument represents the interest rate), or they can have the function

6

symbol cheque with two floating point arguments (the interest rate for a positive balance

and the interest rate for a negative balance). Examples of valid terms of this type are

savings(1.03) and cheque(1.02, 1.16).

The arguments of a predicate are declared to be of a certain type with a declaration

such as the following.

:- pred append(list(T), list(T), list(T)).

Here the append predicate is declared to have three list arguments. The lists can contain

elements of any type, but all three lists must contain elements of the same type.

Functions can be declared in much the same way as predicates. For example

:- func fib(int) = int.

A mode classifies each argument of a predicate or function to be either input or output.

If input, the argument passed by the caller must be a ground term; if output, the argument

passed by the caller must be a free variable, which the predicate or function will instantiate

to a ground term. It is possible for a predicate or function to have more than one mode;

the usual example is append, which has two principal modes: append(in,in,out) and

append(out,out,in). We call each mode of a predicate or function a procedure. The

Mercury compiler generates different code for different procedures, even if they represent

different modes of the same predicate or function; in fact, different procedures are handled

as separate entities by most parts of the Mercury debugger and by all parts of the compiler

after mode checking. The mode checking pass of the compiler is responsible for reordering

conjuncts in conjunctions as necessary to ensure that for each variable, the goal that

generates the value of the variable comes before all goals that use the value of the variable.

Each mode of a predicate or function has a determinism associated with it. This

limits the number of solutions that procedure may have. Procedures with determinism

det succeed exactly once; procedures with determinism semidet succeed at most once;

procedures with determinism multi succeed at least once; and procedures with determinism

nondet may succeed zero or more times.

If mode and determinism declarations are omitted from a function declaration, then

the function is assumed to have one mode where all the arguments are input, the return

value is output and the determinism is det. Unless otherwise specified, all points in this

thesis pertaining to predicates in Mercury also pertain to functions, since in Mercury a

function is just a special kind of predicate.

7

If a predicate has only one mode, then type, mode and determinism declarations can

be combined.

:- pred sum(list(int)::in, int::out) is det.

In our experience, few predicates are designed to have more than one solution; most

have exactly one. For example, in the Mercury compiler, roughly 85% of procedures are

det, 14% are semidet, and only 1% multi or nondet. There are a few reasons why this is

the case. One reason is the fact that nondet or multi code cannot perform I/O operations,

because it is impossible to backtrack over an I/O operation once it has been performed

(a printed document cannot be unprinted). Another is to do with the fact that control

information must be reflected in the declarative reading of the problem, instead of with

extra-logical features such as cuts. This often means search algorithms must be encoded

using if-then-else goals and recursion, instead of with backtracking and cuts.

Mercury has a module system that supports information hiding. Each module has an

interface section in which all exported types and predicates are declared. Each module also

has an implementation section where all the exported predicates are defined, along with

the internal predicates and types for the module. The types and predicates declared in the

implementation section can only be accessed from the module in which they are declared.

Programmers must declare the types, modes and determinisms of predicates and func-

tions exported from their defining modules, and common practice is to declare them for

internal predicates and functions as well, though these could be inferred. The compiler

verifies these declarations. This process catches most simple errors in the program, leaving

only the relatively complex ones to be found by the debugger.

To illustrate consider the following predicate.

:- pred apply_interest(account::in, float::in, float::out) is det.

apply_interest(savings(I), Amount0, Amount0 * I).

apply_interest(cheque(IPos, INeg), Amount0, Amount) :-

(if Amount > 0 then

Amount = IPos * Amount0

;

Amount = INeg * Amount0

).

(Note that unlike in Prolog, in Mercury evaluable functions such as * can appear

anywhere, not just on the right hand side of the is operator.)

8

The apply interest predicate performs an interest calculation based on a given type

of account.

The mode and determinism declarations say that for any account type and amount

there is exactly one way to apply interest to the amount.

Now suppose the program is later modified and a new function symbol is added to the

account type.

:- type account

---> savings(float)

; cheque(float, float)

; credit(float, float).

Suppose further that the programmer forgets to update the apply interest predicate

definition to hand credit accounts.

In other logic languages such as Prolog and Gödel [18] which do not have strong mode

and determinism systems, this would become a bug in the resulting executable and the

error would only be detected at runtime if at all. If the predicate were implemented in an

imperative language as a case statement, then the error would also go undetected by most

compilers.

The Mercury compiler, however, spots this error, since the determinism of the predicate

no longer matches its declared determinism (because the predicate will fail if it is passed

a credit account type).

Other types of errors are also impossible to express in Mercury. One cannot, for exam-

ple, dereference an invalid pointer, since Mercury has no concept of pointers. The mode

system also ensures that variables cannot be used before they are initialised.

2.1.2 Input and Output

The Mercury mode system also supports uniqueness through the use of the modes di which

stands for destructive input and uo which stands for unique output. If a value is passed as

destructive input to a procedure, then there may be no other references to the value live

at the time of the call, since the call will clobber that value. Calls that accept destructive

input cannot be backtracked over or fail, since it is impossible to reconstruct the clobbered

value. The compiler checks these conditions. A unique output argument is guaranteed to

be unique, so it can be passed as destructive input to other calls.

Unique modes are particularly useful for performing I/O. The Mercury standard library

9

provides an ‘io’ type which abstractly represents the state of the world at a particular point

during program execution. All predicates that perform I/O must accept a pair of arguments

of the type ‘io’. One of the arguments must be destructive input and the other must be

unique output. This ensures that I/O operations are never backtracked over.

Every valid Mercury program contains a main predicate that accepts a di, uo pair of

arguments of type io. The main predicate is the first predicate executed in a program.

This, together with the fact the I/O arguments are uniquely moded, ensures that there is

only ever one reference to the current I/O state at any point in the execution of a program.

I/O states enable I/O to be handled in a purely declarative way in Mercury. They

therefore do the same job as monads in Haskell, and linear types in Clean.

Because threading a pair of I/O states through predicates can be laborious, Mercury

allows some syntactic sugar called state variable notation. This allows predicates such as

the following

:- pred write_html_tag(string::in, io::di, io::uo) is det.

write_html_tag(ElementName, IO0, IO) :-

write_string("<", IO0, IO1),

write_string(ElementName, IO1, IO2),

write_string(">", IO2, IO).

to be written as

:- pred write_html_tag(string::in, io::di, io::uo) is det.

write_html_tag(ElementName, !IO) :-

write_string("<", !IO),

write_string(ElementName, !IO),

write_string(">", !IO).

The ‘!IO’ above are called state variables and represent an input/output pair. If a state

variable appears in a fact, then the variables in the pair are simply unified.

2.1.3 Exceptions

Mercury allows exceptions1 to be thrown and caught during the execution of a program.

This means that beside succeeding or failing, a procedure call may also throw an exception.

1It should be noted that the exceptions we refer to here have nothing to do with the exceptions proposed
by Kowalski [22]. His exceptions are logic programming rules of the form “¬p← q”, and are unrelated to
the exceptions we discuss here. The exceptions discussed in this section are similar to the exceptions in
some imperative programming languages, such as Java.

10

This is an essential feature when developing large software systems as it allows runtime

assertion checking and graceful recovery from unexpected behaviour.

The value of the exception can be any ground Mercury term. The special purpose

predicate throw is used to throw exceptions. Declaratively throw has no interpretation.

Operationally, calling throw causes its argument to be thrown as an exception. For exam-

ple:

divide(N, D, Q) :-

(if D = 0 then

throw("division by zero")

else

Q = N / D

).

If a thrown exception is not caught, then the program aborts. For procedures which

may succeed at most once, a thrown exception can be caught by passing a call to the

procedure to the builtin predicate try. For example:

maybe_divide(D, N, MaybeQuotient) :-

try(divide(D, N), Result),

(if Result = succeeded(Q) then

MaybeQuotient = yes(Q)

else

MaybeQuotient = no

).

The first argument to try is the closure which may throw an exception. The procedure

should have one output argument. In the example we use currying to convert divide into

a procedure which returns one output argument. After the procedure has been executed

the second argument is unified with one of three functors:

1. succeeded(R), if the call succeeds, where R is bound to the output of the procedure,

2. failed, if the call fails or

3. exception(E), if the call or one of its descendant calls throws an exception, where

E is the exception which was thrown.

To catch exceptions thrown by procedures that may succeed more than once, another

predicate is provided. try all(Goal, MaybeException, Solutions) tries to finds all

11

solutions to Goal. If no exception is thrown by Goal in doing this, then MaybeException

is bound to no and Solutions is bound to the list of all solutions for Goal. If Goal does

throw an exception, then MaybeException is bound to yes(E), where E is the thrown

exception, while Solutions is bound to the list of all solutions found before the exception

was thrown.

Versions of try and try all that accept a pair of I/O states are also provided. These

allow exceptions thrown by predicates which do I/O to be caught.

Whenever a procedure call throws an exception, an excp event is generated instead of

the exit or fail event which would have been generated had the procedure succeeded or

failed respectively. Thrown exceptions propagate up the call stack until a try or try all

stack frame is found. A new excp event is generated for each stack frame as it is popped

off the stack while searching for the nearest try or try all. Every generated excp event

therefore has a matching call event earlier in the trace.

2.1.4 Higher order terms

Mercury allows higher order terms to be passed as arguments to procedure calls. The

higher order term appears as a variable in the procedure it is passed to and can be called

by placing arguments in parenthesis after the higher order variable.

For example a ‘map’ predicate which applies a higher order term to the elements of a

list to produce a new list could be defined as follows.

map(_, [], []).

map(P, [H0 | T0], [H | T]) :-

P(H0, H),

map(P, T0, T).

Higher order terms can be constructed by currying or by in-place anonymous procedure

definitions.

2.1.5 Extra terminology

In Mercury a disjunction where each disjunct unifies the same ground variable with a

different function symbol of the same type is called a switch. Switches can be implemented

more efficiently than normal disjunctions since at most one of the disjuncts can possibly

be true, so at most one disjunct in a switch is evaluated.

12

The body of a predicate is simply the disjunction of all the clause bodies with overlap-

ping variables replaced by unique variables. All arguments in the head are transformed to

unique variables, and the appropriate unifications are added to the body.

Because of this, we will refer to the body or head of a predicate, instead of the body or

head of a clause as is usually done in logic programming literature.

The Mercury compiler first compiles a Mercury program down to an imperative pro-

gram (usually C, though Java and IL backends have also been partially developed). An

executable (or bytecode in the case of Java or IL) is then generated from the imperative

program.

2.2 The Mercury procedural debugger

When a program is compiled with debugging enabled, the generated imperative code is

instrumented with callbacks to the runtime system. These callbacks are placed at points

in the program that might be of interest, such as the entry and exit points of procedures.

If the program is run normally then these callbacks are null operations, however if the

program is run under the debugger then the callbacks stop the execution of the program

and give control to the debugger.

Once the debugger has control it interacts with the user. The user can then step

through the execution of the program in much the same way he or she would step through

the execution of a C program using gdb. The procedural debugger supports most features

one would expect from a modern tracing debugger such as conditional breakpoints and the

ability to view the values of variables on the call stack. The user may also rewind the state

of the program to the state it was in at a particular call, even in the presence of I/O. This

is achieved using the ‘retry’ command and I/O tabling [46].

The internals of the procedural debugger are described in more detail in [47].

Events can be classified into two categories, interface events and internal events. Inter-

face events describe the interaction between one invocation of a procedure and its caller,

while internal events describe the flow of control inside the call. The are five types of

interface events.

call A call event occurs just after a procedure has been called, and control has just

reached the start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and control is about to

13

return to its caller.

redo A redo event occurs when all computations to the right of a procedure call have

failed, and control is about to return to this call to try to find alternative solutions.

fail A fail event occurs when a procedure call has run out of alternatives, and control

is about to return to the rightmost computation to its left that has remaining

alternatives which could lead to success.

excp An exception event occurs when control leaves a procedure call because that call

or one of its descendants has thrown an exception.

call, exit, redo and fail events correspond to the four ports in Byrd’s box model [5].

excp events are useful for debugging code which throws exceptions. Whenever execution

enters a call a call or redo event occurs. Whenever execution leaves a call an exit, fail

or excp event occurs.

There are eight kinds of internal events. Their purpose is to record the outcomes of

decisions about the flow of control, and to mark the boundaries of (possibly) negated

contexts. The second kind were added specifically to support the declarative debugger.

cond A cond event occurs when execution reaches the start of the condition of an if-then-

else.

then A then event occurs when the condition of an if-then-else succeeds, and execution

reaches the start of the then part.

else An else event occurs when the condition of an if-then-else fails, and execution

reaches the start of the else part.

nege A negation enter event occurs when execution reaches the start of a negated goal.

negf A negation failure event occurs when a negated goal succeeds, which means that

the negation failed.

negs A negation success event occurs when a negated goal fails, which means that the

negation succeeded.

disj A disj event occurs when execution reaches the start of a disjunct in a disjunction.

swtc A switch event occurs when execution reaches the start of one arm of a switch.

14

At each event, the debugger has access to several kinds of information about the event.

The event number uniquely identifies the event, and the call number uniquely identifies a

specific invocation of a procedure. The event depth gives the number of ancestors linking

the call to the initial invocation of main. The debugger of course knows the identity of the

procedure within which the event occurs (the name of the predicate or function, its arity,

its mode number, etc), and the list of the variables that are live at the time of the event,

including their names, types and storage locations.

At each internal event, the debugger also has access to the goal path. This gives the

identity of the subgoal associated with the event. For most kinds of internal events, the

goal path identifies the goal that execution is about to enter when the event occurs, the

exceptions being negf and negs events, for which it identifies the goal that execution has

just left when the event occurs.

2.3 The Mercury declarative debugger

The Mercury declarative debugger is divided into three main components.

1. The analyser which searches a tree for bugs. The tree it searches is a representation

of the execution of the program, and is an instance of the scheme proposed by Naish

[32]. In this scheme the tree and the algorithm used to search the tree are separate

components. The analysis algorithm has an abstract view of the tree. The tree need

only have the property that if an erroneous node has only correct children, then it

represents a bug in the program. This decoupling of search algorithm and search tree

allows greater flexibility in our implementation. We will refer to the tree searched

by the analyser as the evaluation dependency tree or EDT. This name is borrowed

from the lazy functional declarative debugging community, and was first coined by

Nilsson and Sparud [37]. Although its meaning is slightly different in our context

(mainly because Mercury is not a lazy functional language) we have adopted the term

because it aptly describes the trees we generate. We are able to do both missing and

wrong answer diagnosis using the EDT. In addition we are also able to diagnose the

cause of unexpected exceptions.

2. The oracle which the analyser queries to ascertain which nodes are erroneous and

which nodes are correct. Normally the user will act as the oracle. However, the

answers given by the user will be remembered and used if the oracle is asked the

15

same question twice. Users may also declare certain predicates or entire modules to

be trusted. The oracle is able to answer questions about trusted predicates without

consulting the user.

3. The backend which is responsible for generating the EDT. The nodes in the EDT are

generated by replacing the callbacks which normally invoke the procedural debugger

with callbacks which construct the nodes in the EDT.

2.3.1 The analysis algorithm

Following the ideas proposed by Naish [32], the analysis algorithm searches an abstract

tree for a node which is buggy. To do this it only needs to know how to get the children

of any node in the tree and whether a particular node is erroneous or not.

Naish [32] gives the following definition of a buggy node: A node is buggy if it is

erroneous and has no erroneous children. The definition of erroneous depends on the

actual tree which is being debugged. We will give a definition of erroneous nodes for our

trees in section 2.3.2.

The algorithm proposed by Naish to find buggy nodes in a tree is shown (in Mercury

syntax2:) in figure 2.1.

debug(Root, Bug) :-

erroneous(Root),

(if

child(Root, Child),

debug(Child, Bug1)

then

Bug = Bug1

else

Bug = Root

).

Figure 2.1: Naish’s top-down debugger.

Note that (if C then T else E) is declaratively equivalent to (C∧T)∨((¬∃C)∧E)

in Mercury, so the call to child can be backtracked into to produce more solutions.

2We show the analysis algorithms here using Mercury syntax, because in this form they are easier to
reason about formally than they would be in a pseudo-imperative form. Later on, algorithms will be
presented in an imperative pseudo-code so as to be more accessible to a general audience.

16

A top-most buggy node is a buggy node all of whose ancestors are erroneous. Naish [32]

proves that his version of debug will find all top-most buggy nodes and only all top-most

buggy nodes.

We use a modified version of Naish’s algorithm (figure 2.2).

debug(Root, Bug) :-

erroneous(Root),

(if pick_descendant(Root, Descendant) then

(if erroneous(Descendant) then

debug(Descendant, Bug)

else

tree_minus(Root, Descendant, NewTree),

debug(NewTree, Bug)

)

else

Bug = Root

).

Figure 2.2: Our debugger.

pick descendant(Node, Descendant) deterministically chooses an arbitrary descen-

dant of Node (excluding Node itself). If Node has no descendants then pick descendant

fails. tree minus(Tree1, Tree2, Result) is true iff Result is the tree Tree1 with Tree2

removed.

Our algorithm differs from Naish’s in two respects:

1. Through customization of the implementation of pick descendant, arbitrary search

strategies can be used, so we are not limited to just top-down search.

2. Our algorithm is not complete (although as we will show it is sound). This means it is

not guaranteed to find all buggy nodes, nor even all topmost buggy nodes. However

it is guaranteed to find at least one buggy node if the root of the tree is erroneous.

This behaviour is perfectly acceptable, since in general programmers only search for

and fix one bug at a time.

Our algorithm is very similar to Pereira’s Select&Query algorithm [39] in the way we

separate the search strategy from the diagnosis algorithm.

We show soundness by induction over sets of trees of different sizes.

Proposition 1. For all trees t, debug(t, Bug) ⇒ Bug is buggy in t.

17

Proof. Let Tn be the set of all trees of size less than or equal to n.

Base case: suppose t ∈ T1 and debug(t, Bug) is true. Then pick descendant(t,

Descendant) is false for all values of Descendant because t has no descendants. Thus the

else branch of the outer if-then-else must succeed which implies that Bug is buggy in t by

the definition of buggy.

Now suppose

∀t ∈ Tk(debug(t, Bug)⇒ Bug is buggy in t) (2.1)

for some k ≥ 1.

Suppose that t ∈ Tk+1 \ Tk and debug(t, Bug) is true. t has descendants, so

pick descendant(t, Descendant) will be true for exactly one value of Descendant (since

pick descendant returns only one descendant). If Descendant is erroneous then (2.1) tells

us that Bug is buggy in the subtree rooted at Descendant since Descendant ∈ Tk. This

implies that Bug is buggy in t, since the tree rooted at Descendant is a subtree of t. If

Descendant is not erroneous then Bug is buggy in NewTree, since NewTree ∈ Tk. To show

that Bug is also buggy in t we must consider whether Descendant is a child of Bug or not.

• If Descendant is not a child of Bug, then all the children of Bug in NewTree must also

be children of Bug in t and since Bug is buggy in NewTree it must also be buggy in t.

• If Descendant is a child of Bug, then Bug is buggy in t, because Descendant is not

erroneous.

To prove that the debugger will find at least one buggy node if the root is erroneous

we again use induction over Tk.

Proposition 2. If t is erroneous then there exists some Bug such that

debug(t, Bug).

Proof. Base case: suppose t ∈ T1 and t is erroneous, then debug(t, t) succeeds.

Now suppose

∀t ∈ Tk(erroneous(t)⇒ ∃ Bug such that debug(t, Bug)) (2.2)

for some k ≥ 1.

Let t ∈ Tk+1 \ Tk and suppose that t is erroneous.

18

t has descendants, so there exists exactly one Descendant such that pick descendant(t,

Descendant) is true. If Descendant is erroneous then because Descendent ∈ Tk there

exists a Bug such that debug(Descendant, Bug) is true and so too then is debug(t,

Bug). If Descendant is not erroneous, then the root of NewTree will be erroneous (since

t is erroneous and t and NewTree share the same root) and thus there is a Bug such

that debug(NewTree, Bug) is true because NewTree ∈ Tk, which means debug(t, Bug) is

true.

Note that the soundness of the algorithm is independent of the search strategy used.

This gives us great flexibility to try out different search strategies without risking the

soundness of our debugger.

It should also be noted that debug is merely an abstraction of the actual Mercury

program that implements the analyser. For example in debug above, the result of calls to

erroneous depend only on the node passed to it. In actual fact the result also depends

on the state of the oracle as well as the I/O state (since the I/O state must be consulted

if the user is to act as the oracle). Since in Mercury even I/O is handled declaratively,

the I/O state must be threaded through calls to the erroneous predicate. The proof of

soundness presented above serves only to show that our implementation is based on a sound

design. It by no means proves that our implementation is bug free. In fact bugs found

in the declarative debugger have proved useful case studies. (We can use the declarative

debugger on itself as long as we are careful not to trigger the bug we are trying to find.)

At any point during the execution of the analysis algorithm, we call nodes which have

not yet been eliminated from the tree suspects. We call the set of suspect nodes the suspect

set.

2.3.2 The evaluation dependency tree

In this section we describe the EDT in more detail. We describe what each node in the

tree represents as well as what constitutes an erroneous node. We also define what the

children of any particular node are.

EDT nodes

During the execution of a program a call can succeed and produce a solution by binding

its output arguments. A call can also fail, possibly after producing a number of solutions.

19

Every time a call succeeds there will be a corresponding exit event in the execution

trace. The existence of each exit event makes an assertion about the semantics of the

program. The assertion made is that the solution generated by the call is in the intended

interpretation of the program.

Every time a call fails the program executes a fail event, which implicitly makes the

assertion that the (possibly empty) set of all previous solutions generated by the call is

a superset of all the expected solutions. There may be solutions which are not expected,

however, the presence of exit events for unexpected solutions does not affect the truth of

the assertion associated with the fail event. The assertion associated with a fail event

will be false if and only if there is a solution missing from the solution set.

We will consider calls which abort, resulting in an excp event, later on in this chapter.

For now, each node in the EDT corresponds to the assertion made by an exit or fail

event in the program. We consider a node erroneous if the assertion it makes is inconsistent

with the intended semantics of the program. We call the nodes associated with exit events

wrong answer nodes and the nodes associated with fail events missing answer nodes.

We define the nodes in the EDT in terms of the events generated by the procedural

debugger because this allows us to implement the declarative debugger on top of the

existing infrastructure of the procedural debugger. This also allows us to more closely

integrate the procedural and declarative debuggers, allowing the user to switch between

the two at will.

In order to determine if a node is erroneous or not, the analyser will ask the user

questions about the assertion made by the associated event.

For wrong answer nodes the question will be of the form

sort([1, 4, 2, 3], [1, 2, 3, 4])

Valid?

where the displayed atom is the solution generated at the exit event.

Missing answer questions are of the form

Call member(_, [1, 2, 3])

Solutions:

member(1, [1, 2, 3])

member(2, [1, 2, 3])

member(3, [1, 2, 3])

Complete?

or for calls which fail without producing any solutions:

20

Call member(_, [])

Unsatisfiable?

The oracle answers ‘yes’ or ‘no’ to each question, with an answer of ‘no’ indicating that

the node is erroneous.

The alternative way to ask about failed calls is to require the oracle to give valid

instances of the call which failed (as done by Shapiro [45] and Lloyd [24]). If there is no

matching clause instance with a valid body, then there is a bug in the completion of the

program.

Naish [31] points out that these questions can be much harder to answer since they

require the user (if the user is acting as the oracle) to think of valid instances. It is much

easier to examine a set of instances and decide if that set is complete or not, than to have

to give the set from scratch. It is also very difficult to give correct instances by hand if the

terms involved are large. Pereira’s debuggers [39, 40] adopt the same approach as we do

and display all generated solutions to the user.

It now remains for us to define what exactly the children of any particular node are.

EDT children

The children of any node in the EDT are the exit and fail events generated by child calls

which could have affected the result of the parent call. Thus if a node is erroneous and

all its children are correct, then there must be a bug in the definition of the predicate the

erroneous node relates to, since the correct results of the children are combined together

in the erroneous predicate’s definition to form an erroneous result.

In the absence of negations and if-then-elses, the children of an exit node will be the

last exit events generated by all non-backtracked-over child calls before the parent exit.

(A child call is backtracked-over if a failure after the call causes execution to return to a

goal to the left of the call, or to an alternate disjunct if the call is in a disjunction.) Only

the solutions generated by these events are used in the calculation of the answer given at

the parent exit. The tree generated under an exit node corresponds to the proof tree [25]

for the atom at the exit event.

In the absence of negations and if-then-elses, the children of a fail node will be all

the exits resulting from child calls which produced variable bindings, as well as all the

fail nodes resulting from child calls which failed. This is because if a child call succeeded,

producing an exit event, then it may have succeeded with a wrong answer, the correct

version of which might have caused the parent call to succeed instead of fail. Child calls

21

which succeed, but do not produce any variable bindings, cannot be the cause of the parent

call failing, so they are excluded. Such calls could cause the parent call to fail earlier, but

they cannot be the cause of any missing answers in the parent. On the other hand if a

child call fails, producing a fail event, then it may have missed a solution which in turn

could have caused the parent call to succeed instead of fail.

To illustrate, consider the following predicate.

common_element(List1, List2, Common) :-

member(Common, List1),

member(Common, List2).

Suppose common element is called with List1 bound to [1, 2, 3] and List2 bound

to [4, 2, 5] then the sequence of events generated inside common element would be

as follows (event numbers start at 3 because of events generated before the call to

common element).

Event# Call# Port Atom
3 2 call common element([1, 2, 3], [4, 2, 5],)

4 3 call member(, [1, 2, 3])

5 3 exit member(1, [1, 2, 3])

6 4 call member(1, [4, 2, 5])

7 4 fail member(1, [4, 2, 5])

8 3 redo member(, [1, 2, 3])

9 3 exit member(2, [1, 2, 3])

10 5 call member(2, [4, 2, 5])

11 5 exit member(2, [4, 2, 5])

12 2 exit common element([1, 2, 3], [4, 2, 5], 2)

Since in this case common element succeeds, only the last exit events of the calls to

member are included as children of the exit node for the call to common element, since

only they contribute to the found solution. This results in the EDT shown in figure 2.3.

Suppose a call to the right of the call to common element then failed, causing a redo

into common element. This would add the following events to the trace.

Event# Call# Port Atom
15 2 redo common element([1, 2, 3], [4, 2, 5],)

16 3 redo member(, [1, 2, 3])

17 3 exit member(3, [1, 2, 3])

18 7 call member(3, [4, 2, 5])

22

Figure 2.3: The EDT for a succeeded call to common element

19 7 fail member(3, [4, 2, 5])

20 3 redo member(, [1, 2, 3])

21 3 fail member(, [1, 2, 3])

22 2 fail common element([1, 2, 3], [4, 2, 5],)

The children of the fail event for common element would be all the exit and fail

events generated by the calls to member, except event number 11, since it succeeds, but

doesn’t produce any output. The EDT for the fail at event number 18 is shown in figure

2.4.

Figure 2.4: The EDT for a failed call to common element.

Handling negation

Negations and if-then-elses complicate matters. This is because the criterion that governs

which events are of interest inside a negated goal can be different from the criterion that

23

:- pred danger(animal::in, danger::out) is nondet.

danger(Animal, Danger) :-

(if

(fangs(Animal) ; poisonous(Animal))

then

Danger = high

else

(

hungry(Animal),

fangs(Animal),

Danger = high

;

not hungry(Animal),

Danger = low

;

fangs(Animal),

Danger = medium

)

).

:- pred fangs(animal::in) is semidet.

fangs(snake).

fangs(lion).

:- pred hungry(animal::in) is semidet.

hungry(lion).

:- pred poisonous(animal::in) is semidet.

poisonous(snake).

:- pred afraid(danger::in) is semidet.

afraid(high).

afraid(medium).

Figure 2.5: Example program fragment with an if-then-else, disjunction and negation.

decides what events are of interest outside the negated goal. An if-then-else can have the

same effect as a negation if its condition fails. Recall that, in Mercury, (if C then T

else E) is declaratively equivalent to (C ∧ T) ∨ ((¬∃C) ∧E), although operationally the

condition is evaluated only once.

To illustrate consider the program fragment in figure 2.5.

24

Suppose the goal (danger(caribou, Danger), afraid(Danger)) appears in the

body of the main predicate. The call to danger in this goal will result in the sequence of

events depicted in figure 2.6.

Notice that the set of events for a given procedure call is not necessarily in a contiguous

block, but may be interspersed with events from other calls, from outside as well as inside

the call-tree of the call concerned. For example, the exit and fail events generated by

the call to danger (call 2) are interspersed with the events of the call to afraid (call 7) as

well as e.g. the calls to fangs (calls 3 and 8).

Figure 2.6: Execution trace of a call to danger.

Suppose we are interested in finding the children of the exit node at event number 20.

This exit corresponds to the atom danger(caribou, low). We need to find the exit and

25

fail events, generated by child calls of the call to danger, whose corresponding assertions

are sufficient to prove that danger(caribou, low) is true in the semantics of the program.

Clearly we could make all the child exit and fail events (events 7, 10, 14 and 18)

children in the EDT, since they are sufficient to prove danger(caribou, low) is true in

the semantics of the program. However the fail at event number 14 is irrelevant, since

the truth of the disjunct in which that fail event occurs is irrelevant to the truth of the

body (because another disjunct in the disjunction is true). However, all the fail events in

the if-then-else condition (events 7 and 10) are relevant, since if any of these was an exit

instead of a fail (i.e. if fangs(caribou) or poisonous(caribou) were true) then the

condition of the if-then-else would have succeeded, which would have changed the outcome

of the exit at event number 20.

In practice we are able to eliminate certain nodes which are not necessary to prove the

result of the parent, but not all such nodes all of the time. The child nodes we create will

always, however, be sufficient to prove the assertion of the parent node in the semantics

of the program.

In order to describe exactly how the children of a particular node in the EDT are derived

in the presence of negations and if-then-elses it is helpful to first consider an intermediate

tree structure, which we will call the raw EDT.

Raw EDT nodes

exit and fail events are not the only types of events that have assertions about the

semantics of the program associated with them. The events which signal that execution is

leaving a negated goal also have assertions about the negated goal associated with them.

These include negs and negf events which indicate that a negation has succeeded or failed

respectively (i.e. the negated goal failed or succeeded respectively), as well as else events

which indicate that the condition of an if-then-else has failed.

The presence of a negs event asserts that the negated goal, with all substitutions

computed at the time of the corresponding nege event applied, is unsatisfiable in the

semantics of the program. The presence of a negf event asserts that the negated goal, with

all substitutions computed at the time of the corresponding nege event applied, is satisfiable

in the semantics of the program. The presence of a else event asserts that the condition

of the if-then-else, with all substitutions computed at the time of the corresponding cond

event applied, is unsatisfiable in the semantics of the program.

negs and else events are like missing answer nodes, since they indicate that the goal

26

inside the negation or if-then-else condition has failed, while negf events are like wrong

answer nodes, since they indicate that the goal inside the negation has succeeded.

We call events of type exit, fail, negs, negf or else assertion events. In figure 2.6

the assertion events are in a bold font.

Each node in the raw EDT corresponds to one of these assertion events.

Raw EDT children

In order to define how the children of node in the raw EDT are obtained, we first need

some additional concepts.

We define the events inside the call identified by call c to consist of the events generated

by call c and the events generated by the calls that are the direct and indirect descendants

of call c. This concept is useful because a bug exhibited by call c cannot be caused by any

event outside call c, so when diagnosing such a bug, the debugger can restrict its attention

to the events inside c. In the example given in figure 2.6, the events inside call 2 (the only

call to danger) consist of the events generated by calls 2 – 6 and 8, while the events inside

call 3, the first call to fangs, consist only of the events generated by call 3.

When looking for the raw EDT children of an exit or fail event generated by call

c, not all the events inside call c are needed at once. The ones which are of immediate

concern are the body events of c, which consist of

• the internal events of call c, and

• the interface events of the children of call c.

These events represent the execution of (all or part of) the bodies of the predicate called

by call c. Note that although the interface events of c are “inside” c, they are not counted

as “body events”.

In a set of body events, the internal events relating to negated goals come in pairs:

nege–negs, nege–negf, and cond–else. (There are also cond events which are matched

not by an else event but by one or more then events. These cond events are not related

to negated goals, because the condition of the if-then-else has not failed.) These pairs

divide the body events of calls into segments. We will say that a subsequence of the body

events of a call is a negated context if the subsequence includes all the body events of the

call chronologically between such a pair of delimiter or anchor events, but not the anchor

events themselves.

27

We define a context to be either a negated context or a segment of body events for some

call c which is delimited by the call event of call c and either an exit event or a fail

event of call c. Contexts can have other contexts nested inside them, where the nesting

site is a pair of events anchoring a negated context (the anchor events are considered part

of the outer context only). This nesting is somewhat simpler than the nesting of one

procedure call inside another: while execution can leave a call and then later backtrack

into it, execution can never backtrack into a negated context, because, in Mercury, negated

goals cannot bind non-local variables, and therefore cannot succeed more than once.

In our example in figure 2.6, we can identify four contexts: A, B, C and A ∪D.

We define a stratum to be the set S \
⋃

i
ci, where S is the set of events from some

context, and the ci are the sets of events from all the contexts nested in S. A stratum

clusters together events for goals which have been negated by the same set of constructs

in the procedure. This set may of course be the empty set. All strata are anchored at the

end by an event of type exit, fail, else, negs or negf. Conversely, events of these types

always have a matching call, cond or nege event respectively earlier in the same body, so

each exit, fail, else, negs or negf event anchors the end of a (unique, possibly empty)

stratum. We can therefore identify a stratum by the event which anchors it at the end.

The body events of a call are important because they tell us how the results from its

children were put together to derive the call’s result. However, due to the presence of

negation, we must treat different body events differently depending on their context. The

reason why it is useful to consider just the events in a single stratum is that the events of

a single stratum are treated uniformly.

The two events anchoring a stratum define a goal. If the stratum is delimited by a

call–exit or a call–fail pair, the goal is the body of the relevant procedure. If the

stratum is delimited by a cond–else pair, the goal is the condition of the if-then-else

identified by their goal paths inside the relevant procedure. If the stratum is delimited by

a nege–negs or a nege–negf pair, the goal is the goal inside the negation identified by

their goal paths inside the relevant procedure.

The assertions made by all the assertion events inside a stratum are sufficient to explain

the assertion made by the event anchoring the end of the stratum, though they are not

always necessary.

In our example in figure 2.6 we can identify four strata:

1. B (anchored by event number 11),

2. C (anchored by event number 19),

28

3. A \ (B ∪ C) (anchored by event number 20) and

4. [A \ (B ∪ C)] ∪D (anchored by event number 27).

When diagnosing a missing answer to the goal defined by a stratum, the declarative

debugger is interested in all the events in the stratum, regardless of whether they led to

a solution or not. However, when diagnosing a wrong answer, we are interested only in

events that describe how that particular answer was computed; alternative disjuncts or

exits that did not lead to the wrong answer can be ignored. The events of interest are

those which represent how forward execution generated the solution—any events which

represent backtracking, or which had been backtracked over at the point the solution was

generated, are not relevant to the solution. We call a sequence of stratum events like this a

contour. Most event types can appear in a contour; however, redo, fail and negf events

indicate that backtracking has happened or is about to happen, so these events are never

part of a contour.

The assertion events lying on a contour are sufficient to explain the existence of the

exit or negf event at the end of the contour.

We therefore define the children of an exit or negf node in the raw EDT to be the

assertion events lying on the contour leading up to that exit or negf event. We define the

children of a fail, negs or else node to be all the assertion events, except exit events

which produce no variable bindings and negs events, on the stratum anchored at the end

by the parent fail, negs or else event.

We do not include exit events which produce no variable bindings or negs events

(which cannot produce any variable bindings), since these cannot be responsible for the

failure of the goal associated with the stratum.

Applying this definition to our example in figure 2.6 yields the raw EDT depicted in

figure 2.7 for the exit node at event number 20, and the raw EDT depicted in figure 2.7 for

the fail node at event number 27. Note that the negs at event number 19 is not a child

of the fail node at event number 27. This is because the negs event cannot produce any

bindings, and so even if it was a negf event instead (i.e. the negated goal had succeeded

instead of failing), this would not have changed the fact that the parent call failed.

Obtaining the EDT from the raw EDT is simply a matter of removing the negs, negf

and else nodes and adding any children of these nodes to the parent node. Applying this

procedure to the raw EDTs in figures 2.7 and 2.8 yields the EDTs in figures 2.9 and 2.10

respectively.

29

Figure 2.7: The raw EDT for the exit node at event number 20.

Figure 2.8: The raw EDT for the fail node at event number 27.

Why do we search for bugs in the EDT, instead of the raw EDT? The advantage of

using the raw EDT to search for bugs is that we gain finer grained bug location — we can

localise the bug to a specific negation or if-then-else condition, whereas with the EDT the

bug can only be localised to the body of a predicate. The price we pay for this increased

accuracy, however, is a bigger search space (since in general the raw EDT will have more

nodes than the EDT), and harder questions for the oracle to answer. The questions will

be harder for the user to answer because in general the user will not assign an intended

interpretation to a negated goal (which may consist of many atomic goals). The user has

an intended interpretation for each predicate, but not for each negated goal. To answer

questions about negated goals the user will also need to know the context of the negated

goal, since an instance of a goal may be correct in the body of one predicate and erroneous

in the body of another. We therefore sacrifice the ability to localise a bug to a specific

negation or if-then-else condition, for fewer, simpler questions.

30

Figure 2.9: The EDT for the exit node at event number 20.

Figure 2.10: The EDT for the fail node at event number 27.

A special case

There is one notable exception to the rules for determining the children of a node in the raw

EDT which we have described above. The exception is the solutions builtin predicate.

solutions(Goal, Solutions) is true iff Solutions is a list of all the solutions to the

procedure Goal. For example suppose a predicate p is defined as follows.

p(a).

p(b).

p(c).

A call to solutions(p, Solutions) would bind Solutions to the list [a, b, c].

The resulting execution trace would be as follows.

Event# Call # Port Atom
3 2 call solutions(p,)

4 3 call p()

5 3 disj

6 3 exit p(a)

7 3 redo p()

8 3 disj

31

9 3 exit p(b)

10 3 redo p()

11 3 disj

12 3 exit p(c)

13 3 redo p()

14 3 fail p()

15 2 exit solutions(p, [a, b, c])

Now suppose we wished to find the children of the exit node for the call to solutions

(event number 15). Normally to find the children of an exit node we would look at the

contour leading up to that exit, however in this case we want to include all exit and

fail events for p in the children of the exit node for solutions. This is because if any

of the assertions made by any of p’s exits is wrong then the list produced by solutions

would contain an incorrect element, and if the assertion made by the fail event is wrong

then the list returned by solutions would contain too few elements.

Thus we make a special case of calls to solutions (and related builtin predicates)

and collect all assertion events on the stratum anchored by an exit event of a call to

solutions.

Making a special case of these builtin predicates is okay, since they are not reproducible

using pure Mercury code. It is however possible to create similar predicates using Mercury’s

impurity system. Currently we do not support declarative debugging of impure code.

Section 7.5 explores the possibility of supporting impurity in the future.

2.3.3 The annotated trace

We now concern ourselves with how we can efficiently construct the raw EDT.

We construct the raw EDT on demand, based on a representation of the execution we

call the annotated trace [4]. The annotated trace is like a chronologically ordered linked

list of trace events, with two main differences. The first is that we only record events

down to a given depth; if the analysis algorithm needs to know about EDT nodes and

hence events below this depth, then it will use the machinery of the procedural debugger’s

‘retry’ command [46, 47] to repeat that part of the execution, this time recording events

to a deeper level. Nodes below the depth limit are said to be in an implicit subtree. These

nodes are not represented (or materialized) in memory. Execution traces can consist of

hundreds of millions of events, so doing this allows us to trade-off the space required to store

32

the annotated trace against the time required to construct it. This space-time trade-off is

explored in detail in chapter 5.

The second difference is that we maintain extra links between nodes in the annotated

trace. These links make it easy and efficient to step through strata and contours in the

annotated trace. This allows us to efficiently find the children of any node in the raw EDT

and thus the EDT.

The nodes of the annotated trace

Each node in the annotated trace corresponds to an event generated in the program. Each

node is represented by a structure whose fields point to other nodes in the annotated trace

or which give information about the node. Each event type has different fields.

• All nodes have a preceding field which points to the node of the immediately pre-

ceding event; this field is NULL for the first event in the trace.

• The nodes of internal events have a goal path field that holds the goal path of the

event. This allows us to identify the goal associated with an internal event and

is particularly useful for subterm dependency tracking, which is described in more

detail in section 4.3.

• Nodes for disj events have a first disj field, which contains the event number for

the disj event generated when execution enters the first disjunct of that disjunction.

In the node for the disj event for the first disjunct, this field is thus self-referential.

• The nodes of else, negs and negf events have a context start field that identifies

the start of the negated context they represent the end of. For else events, it points

to the node of the corresponding cond event; for negs and negf events, it points to

the node of the corresponding nege event.

• The nodes of exit and fail events have a call field that points to the node of the

corresponding call event.

• The nodes of exit and fail events also contain a redo field. If the call has succeeded

before, this field points to the node of the redo event that has asked for another

solution to be generated; if the call has not produced any previous solutions, this

field will be NULL.

33

step in stratum(this) returns next is

switch on the type of this node
case call: raise an exception
case exit: If this.redo = NULL

next := this.call.preceding
Else

next := this.redo.preceding
case redo: next := this.exit.preceding
case fail: If this.redo = NULL

next := this.call.preceding
Else

next := this.redo.preceding
case cond: next := this.preceding
case then: next := this.preceding
case else: next := this.context start.preceding
case nege: raise an exception
case negs: next := this.context start.preceding
case negf: next := this.context start.preceding
case swtc: next := this.preceding
case disj: next := this.preceding

Figure 2.11: Algorithm for stepping to the previous event in a stratum.

• At each call node we also store the identity of the procedure being called as well as

references to the values of the input arguments of the call.

• At exit nodes we store references to the output arguments of the atom at the exit

event. This, together with the input arguments and procedure information stored at

the call node allow us to display questions to the user.

• At redo nodes we store a reference to the exit node corresponding to the last gen-

erated solution of the call which is being redone.

These links are enough to be able to efficiently step through any stratum or contour in

the execution trace.

Figure 2.11 shows the algorithm for stepping one node to the left in the current stratum.

If we encounter an exit or fail event then the next event in the stratum will be the last

redo for that call, or if there is are no redos then it is the corresponding call event.

The step in stratum function skips over call events, cond events for failed if-then-else

34

step left in contour(this) returns next is

switch on the type of this node
case call: raise an exception
case exit: next := this.call.preceding
case redo: raise an exception
case fail: raise an exception
case cond: next := this.preceding
case then: next := this.preceding
case else: next := this.context start.preceding
case nege: raise an exception
case negs: next := this.context start.preceding
case negf: raise an exception
case swtc: next := this.preceding
case disj: next := this.first disj.preceding

Figure 2.12: Algorithm for stepping to the left in the current contour.

conditions and nege events in the stratum. These events don’t represent nodes in the

EDT.

This function can be used to find the children of a fail, negf or else node in the

raw EDT by repeatedly applying it to the node preceding the fail, negf or else node

until either a call, nege or cond node is found. Along the way all the assertion events in

the stratum, excluding exit events which don’t produce any output and negs events, are

gathered as children. Note that we abort in the cases where this is a call or nege event,

since step in stratum should never be called with such an event (since we always step over

them). cond events, on the other hand, are handled. This is because the condition may

have succeeded which means the condition is not in a negated context. If the condition

failed and we are stepping through the stratum anchored at the corresponding else, then

we will stop as soon as step in stratum returns a cond event.

The “Stratum” column in figure 2.13 illustrates the nodes traversed through repeated

applications of the step in stratum function, starting with event number 26. The events

traversed are all from the stratum anchored by event number 27. Although some of the

events in this stratum are skipped (such as event number 13), all assertion events in the

stratum are traversed.

Figure 2.12 shows that algorithm for stepping one node to the left in the current contour.

This function can be used to find the children of an exit or negs node in the raw EDT. To

35

find the children of an exit or negs node we simply repeatedly apply step left in contour

to the event preceding the exit or negs event until we encounter a call or nege event,

gathering all assertion events as we go. Note that we don’t stop at cond events as we

did with step in stratum, since returned cond events can only represent succeeded if-then-

else conditions (this is because if the condition had failed, then we would be looking

along the stratum, not the contour). step left in contour should never be called with a

call, redo, fail, nege or negf event since all such events will be jumped-over by the

step left in contour function.

Figure 2.13: An example contour and stratum.

The “Contour” column in figure 2.13 shows the nodes traversed through repeated ap-

plications of the step left in contour function, starting with event number 19. The events

36

traversed are all from the contour anchored by event number 20. Notice how alternate

disjunctions, for example the disjunct at event number 12, are skipped, since they are not

relevant to the answer computed at event number 20.

Constructing the annotated trace

Nodes are added to the annotated trace in chronological order. This means that whenever a

new node is added to the annotated trace, the nodes which the fields of the new node must

point to are already in the trace. More importantly, with the exception of the preceding

field, all the fields will point to nodes in the same stratum as the node being added.

To populate the previous field we simply keep a record of the previous node which

was added to the trace. If the new node is a call, cond, then, swtc or nege node then

there are no other fields to populate.

To populate the fields of the other nodes we first need to find a previously added node

which is on the same stratum. We can then apply the step in stratum function to traverse

the stratum.

Note that if we are inside an if-then-else condition, then it doesn’t matter whether the

condition failed or not, as all the nodes required to populate the fields of nodes added inside

the condition will themselves be inside the condition, so for the purposes of populating the

fields of each node, we can consider cond nodes to mark the start of a nested negated

context, even though we don’t necessarily know if the condition has failed or succeeded

yet.

For exit, fail, negs, negf and else nodes there are two cases to consider.

1. The previous node is in the same stratum as the node being added. This will only

happen if the previous node is a call, redo, nege or cond node. If the previous node

is a call, nege or cond then it can be used to populate the field of the current node.

If the previous node is a redo then we can look up the previous exit for the call by

looking up the appropriate field in the redo node. From the exit we can then look

up the call node.

2. The previous node is in a stratum one level down from the node being added. This

will happen if the previous node is anything other than a call, redo, nege or cond.

In this case we must first traverse the nested stratum until we find a call, redo, nege

or cond from the stratum the current node is in. This can be done by repeatedly

37

applying step in stratum starting with the preceding node, until a call, redo, nege

or cond node is returned. See below for an optimisation.

For redo nodes we must find the exit node which corresponds to the previous solution

generated by the call. The node preceding a redo will either be in the same stratum or in

a stratum one level up. The preceding node cannot be in a nested stratum one level down,

because redo events do not mark the ends of strata. The only time the previous event will

be in a stratum one level up is when the preceding node is another redo. In this case we

can follow the exit field of the preceding redo. The node preceding this exit must be on

the same stratum as the redo being added. (The stratum anchored by this exit cannot

be empty, because then there would be no call to redo.) Otherwise the redo being added,

and its preceding node, must both be on the same stratum. Once we have a node on the

same stratum we can traverse the stratum looking for the exit node corresponding to the

last generated solution.

In practice we use a modified version of step in stratum to traverse the stratum when

populating the fields of a newly added node. The modified version looks for the first event

in the stratum which is also on a contour. We can then use step left in contour instead

which will skip irrelevant nodes. This optimisation is described in [4].

New portions of the annotated trace are constructed piecemeal, as and when they are

needed by the analyser. We explore in detail the problem of deciding how much of the

annotated trace to materialize at once in chapter 5.

2.3.4 Handling exceptions

It is very important that we be able to debug code which throws exceptions, since many

bugs exhibit themselves by causing some assertion in the program to be violated, which

then causes an exception to be thrown. This is especially true for Mercury where often

the programmer is required, in order to satisfy a determinism declaration, to throw an

exception in the branch of a disjunction or if-then-else which they know cannot be executed,

but where the compiler is unable to infer that the branch is unreachable. If the branch

is reached then the programmer made a mistake somewhere, and the value of the thrown

exception helps narrow down where that mistake might be.

38

Exception EDT nodes

The existence of an excp event implicitly makes an assertion about the operational seman-

tics of the program, though nothing about the declarative semantics is said. This assertion

says that the associated procedure call is allowed to throw the thrown exception, given the

values of its input arguments. We include excp events as nodes in the EDT.

Questions about excp nodes are of the form:

Call divide(1, 0, _)

Throws "division by zero"

Expected?

The user is expected to answer ‘no’, indicating that the node is erroneous, if the named

exception should not have been thrown by the procedure call. This tells the declarative

debugger that either (a) a different exception should have been thrown, or (b) no exception

should have been thrown. In either case the bug lies in the definition of the predicate the

question is about or in one of its descendants. The bug is either a missing try or try all,

an incorrectly calculated exception value, or some other buggy descendant which caused

the call to throw to be executed when it should not have been.

It may also be the case that the user expects exceptions to be thrown in certain sit-

uations. For example the user may expect the input to divide above to sometimes be

zero and they may have code which handles any "division by zero" exceptions. In this

case the user would be expected to answer ‘yes’ to the question about the aborted call to

divide. This asserts that the associated EDT node is correct in the intended (operational)

semantics.

Exception node children

The children of an excp node in the EDT are the exit, fail and excp events generated

by child calls which could have caused the exception to be thrown.

Backtracked over goals could not have been responsible for the thrown exception. This

is because a backtracked over goal couldn’t have thrown the exception itself (since then

it wouldn’t have been backtracked over), nor could any of the bindings it computed have

been used in the computation which lead to the exception being thrown (since the bindings

are lost on backtracking).

If the excp event does not occur in a negated context, then we use the same criteria

for deciding the children of the excp event as we do for deciding the children of an exit

39

event, i.e. we include all assertion events (including child excp events) along the contour

leading up to the excp event.

If the excp event is in a negated context then there will be at least one cond or nege

event between the excp event and the corresponding call event. This cond or nege event

will not have a corresponding else, negf or negs event, since the exception is thrown

before that event can be generated. In this case we look for child nodes on the contour

between the excp event and the cond or nege node marking the start of the negated context

the exception is thrown in. If the excp event is inside further, nested, negated contexts,

then we continue to look at the contours between the cond or nege events marking the

beginning of nesting negated contexts. Finally we look at the contour between the call

event and the cond or nege event marking the start of the outermost negated context the

exception is thrown in. All these contours together explain how the exception came to be

thrown in the body of the procedure. The step through contours function in figure 2.14

can be called repeatedly, starting with the event to the left of the excp event, and stopping

when a call event is returned, to traverse the contour(s) leading up to the excp event.

step through contours(this) returns next is

If this is a nege or cond event
next := this.preceding

Else
next := step left in contour(this)

Figure 2.14: Algorithm for stepping through the contours leading up to an exception which
was possibly thrown in a negated context.

All assertion events on the contour(s) leading up to an excp node are counted as children

of the excp node in the raw EDT. The raw EDT is then converted to the EDT in the usual

manner.

For example consider a call to the following predicate

p :- q, not (r, throw(error)).

and suppose it generates the following execution trace.

Event# Call# Port Atom
1 2 call p

40

2 3 call q

3 3 exit q

4 2 nege

5 4 call r

6 4 exit r

7 5 call throw(error)

8 5 excp throw(error)

9 2 excp p

The children of the node corresponding to event number 9 are events 8, 6 and 3. The

exit events 6 and 3 are in different contexts, and therefore on different contours, however

if either of the associated calls had behaved differently (for example by failing instead of

succeeding), then the exception might not have been thrown.

The only exception to this rule is when we want to find the children of the exit node

of a call to try all. The reasons are the same as the reasons we treat calls to the builtin

predicate solutions differently and are explained in section 2.3.2. The problem is solved

in the same way: by collecting all the assertion events in the stratum anchored at the exit

event generated by the call to try all.

2.4 The relationship between the procedural and

declarative debuggers

The Mercury declarative debugger is invoked from within the procedural debugger. Typi-

cally a user will have some idea of the procedure which is behaving erroneously. They would

start the procedural debugger, set a breakpoint on the procedure and continue execution

until the procedure is called. Once they have established that the procedure is indeed

erroneous, they can then start the declarative debugger at an exit or fail event which

exhibits the erroneous behaviour. The declarative debugger then reexecutes the erroneous

call, generating the annotated trace as it does so.

The user is also permitted to start the declarative debugger at an exit or fail event

which does not exhibit erroneous behaviour. Answering ‘yes’ to the question posed by the

declarative debugger about this node will then cause the EDT to be expanded upwards. To

do this an ancestor call of the call where the declarative debugger was started is reexecuted

(exactly how far up this ancestor is can be controlled by the user). This allows the user to

do a kind of bottom up search from a correct node in the EDT. As we will see later this is

41

particularly useful for debugging code which throws exceptions (see section 6.2).

The user may switch from the declarative debugger to the procedural debugger at any

time. They can return to the procedural debugger either at the event corresponding to

the current question, or at the event where the declarative debugger was started. If the

user returns to the procedural debugger from the declarative debugger, they can resume

their declarative debugging session (from the same question where they left off) at any

time. This is useful if the user wishes to use the facilities of the procedural debugger in

order to answer a declarative debugger question. For example the user might wish to trace

execution through the body of a call before answering a declarative debugger question

about the call.

42

Chapter 3

Usability features

In this chapter we will examine some of the features of the debugger that make it easier

to use.

3.1 Inadmissibility

Often, for reasons of efficiency, the intended interpretation of a predicate will only be

defined in the programmer’s mind for a subset of the ground instances of the predicate.

For example consider a predicate merge(List1, List2, List3) which merges two

sorted lists List1 and List2 to form the new sorted list List3.

Usually we have an intended interpretation of this predicate for all atoms where the

first two arguments are sorted lists. However for atoms where the first two arguments are

unsorted we might not have a clear intended interpretation. This is because we would

not check that the two lists are sorted in the body of merge, because that would be too

inefficient. We instead rely on any callers of merge to always pass it two sorted lists.

Suppose, during the course of a debugging session a question such as the following is

asked:

merge([3, 2, 1], [4, 5, 6], [3, 2, 1, 4, 5, 6])

Valid?

To answer the question we must know if the given atom is in the intended interpretation

or not. Since we have no predefined intended interpretation for this atom (we did not

anticipate such an atom while writing the program) we cannot know how to answer the

question. We might be tempted to answer ‘no’, but this would direct the bug search down

43

the subtree rooted at this atom, which is not what we want, since the bug is not there —

it is outside the subtree rooted at this atom. Giving an answer of ‘yes’, however will direct

the bug search in the right direction. An answer of ‘yes’ asserts that the atom is valid in

our intended interpretation. Now what if, instead of succeeding, the call failed and the

following question was asked:

Call merge([3, 2, 1], [4, 5, 6], _)

Unsatisfiable?

Giving an answer of ‘yes’ would still direct the bug search in the right direction, but

would mean that all ground instances of the atom are not in our intended interpretation.

This contradicts our previous intended interpretation, in which the atom was valid. This

situation is unsatisfactory, because it means we have to adapt what we say our intended

interpretation is to the behaviour of the program. The program should be based on the

intended interpretation and not the other way around!

The solution proposed by Naish [33] is to allow a third answer of ‘inadmissible’ in

addition to ‘yes’ and ‘no’. Answering ‘inadmissible’ to a question allows the oracle to direct

the bug search in the right direction, without making any commitment to the intended

interpretation of the predicate. Answering ‘inadmissible’ is saying ‘I don’t have an intended

interpretation for this atom, because the associated call shouldn’t have occurred in the first

place’.

This gives rise to a new type of bug: one where an erroneous node has one or more

inadmissible children and all the other children are correct. Naish calls such bugs i-bugs

[33] (bugs where an erroneous node has only correct children are called e-bugs).

Admissibility is closely related to Hoare style pre-conditions adapted for logic programs:

if a call is inadmissible then one or more of its inputs violates a pre-condition of the call.

Pedreschi and Ruggieri [38] define a specification as a pair of Herbrand interpretations

〈Pre, Post〉. Pre specifies the admissible atoms, and Post specifies which admissible atoms

are true and which are false. An atom may be in Pre, but not in Post if it is admissible,

but should fail. Atoms not in Pre should not occur at all during the execution of the

program. By answering ‘inadmissible’ the user asserts that the atom being asked about is

not in Pre. Often calls that throw exceptions are inadmissible because the inputs violate

some precondition of the procedure.

Pereira also introduces inadmissible answers in his rational debugger [40], although he

does not elaborate in any great detail on their usefulness.

44

In our case inadmissibility exposes opportunities to reduce the search space further.

Instead of just eliminating the subtree rooted at an inadmissible node, as we do with

correct nodes, we can eliminate all the nodes that do not contribute to the computation

of the inputs to the inadmissible call.

As a first approximation we can eliminate all nodes resulting from calls that were

executed after the inadmissible call. These nodes could not have been responsible for the

inputs to the inadmissible call. Pereira makes a similar observation about inadmissible

calls [39]. He uses this to reduce the search space in his Select&Query debugger.

A refinement would be to use slicing [51] to determine which calls prior to the inad-

missible call could have participated in the computation of the inputs to the inadmissible

call and eliminate all nodes not in this slice. The slice would have to include all nodes

that could have influenced the values of the input arguments, not just the nodes through

which the inputs were passed. Such a slice is called a relevant slice. An efficient method

for determining such a slice is presented in [17].

These refinements warrant a new definition of i-bug. Instead of a node being i-buggy

if it is erroneous with at least one inadmissible child and all other children are correct, we

instead say a node is i-buggy if it is erroneous, has at least one inadmissible child, and

all child nodes that could have influenced the inputs to the inadmissible call are correct.

We do not care about nodes that could not have affected the inputs to the inadmissible

call. Erroneous siblings that were not responsible for the inputs to the inadmissible call

represent separate bugs.

We have not yet implemented these refinements in the Mercury declarative debugger

, but we do have most of the slicing machinery in place already, so this would not be

too hard to do (see section 4.3). At the moment the same nodes are eliminated from the

search space when the oracle answers “inadmissible” as when the oracle answers “yes” to a

question about a node, however we distinguish between e-bugs and i-bugs when reporting

a diagnosis to the user.

3.2 Trusted predicates

Sometimes the user is positive that a predicate in their program is correct, either because

they have proved it correct with respect to some specification (or the predicate is so simple

that it is its specification) or because the predicate has been rigorously tested in the past.

(Of course neither of these guarantee that the predicate will always behave as expected

45

since there may be a bug in the specification, or there may have been scenarios that were

missed by previous tests. However the user may feel that the chances of the predicate being

buggy are negligible.) In these cases the user is not interested in being asked questions

about such predicates, since they are unlikely to be the cause of any bugs in the program.

The user may request that certain predicates or entire modules should be trusted by

the debugger. The debugger will assume that trusted predicates cannot be buggy and will

not ask the user any questions about them.

However, the debugger does not assume that calls to trusted predicates are correct. In-

stead it will simply ignore any nodes in the EDT that result from calls to trusted predicates.

We therefore include a fourth possible oracle answer in addition to ‘correct’, ‘erroneous’

and ‘inadmissible’: An answer of ‘ignore’ from the oracle means the node is not buggy,

though its descendants may possibly be buggy.

A node that is ignored can be considered erroneous if it has an erroneous child and

correct if all its children are correct or inadmissible.

There are two reasons for treating trusted nodes this way. First, one of the arguments

in a call to a trusted predicate may be a higher order term. This higher order term will

most likely be called by the trusted predicate or one of its descendants. The higher order

call may behave erroneously. Since the higher order call will be a descendant of the trusted

node in the EDT, if we assume the trusted node is correct, then we will eliminate the

erroneous higher order call from the suspect set. This means that we will never be able to

diagnose a bug in the subtree rooted at the higher order call’s exit, fail or excp node(s).

Second, it may be the case that a change is made to a predicate, say p, that is called

by another predicate, say q. Now suppose the user is in the habit of trusting both p and q

since they have always performed correctly in the past. The user now decides not to trust

p anymore since a change has recently been made to it. The user chooses to continue to

trust q though, since no change has been made to q’s code. Now if the debugger were to

assume that all trusted nodes were correct, then it would have to assume that any calls to

q should be correct. However, if the change in p has introduced a bug, then the debugger

will never be able to find this bug if it is in a call to p which is a descendant of the call to

q.

The user never gives an answer of ‘ignore’, instead the user indicates which predi-

cates (or entire modules) should be trusted. The oracle then gives an ‘ignore’ response to

questions about trusted predicates.

The user may assert which predicates or modules are trusted before starting a declara-

46

tive debugging session, or the user may decide to trust predicates if and when the declar-

ative debugger asks a question about the predicate.

By default all predicates in the Mercury standard library are trusted. This avoids many

questions about obviously valid atoms, such as:

+(2, 2) = 4

Valid?

(+ is a function in the Mercury standard library). It is also very helpful to trust

predicates that take higher order arguments such as map which applies a given predicate to

a list of values to generate another list of values, since this avoids many irrelevant questions

about the internal workings of map, that are known to be correct.

Drabent et al [13] present a generalisation of trusted predicates where the user can

specify arbitrary assertions that the oracle can then use to answer debugger queries. This

technique has the potential to greatly reduce the number of questions. However, this

introduces the possibility that the assertions contain bugs themselves (since the assertions

can be arbitrary logic programs). The risk of this increases with the age of the software,

since the assertions must be kept up to date whenever the program is changed.

3.3 ‘Don’t know’ answers

In order to locate bugs the oracle needs to be able to answer ‘correct’, ‘erroneous’, ‘inad-

missible’ or ‘ignore’ to at least some of the questions. However, in some cases, the user

might feel that the question asked is particularly difficult to answer, and may prefer to

take their chances with a different part of the search space first. We also provide a fifth

answer of ‘skip’ for use in such cases.

The key difference between the four other answers and a ‘skip’ answer is that ‘skip’

provides no knowledge of the intended interpretation. This means that a ‘skip’ answer will

not be used by the oracle to infer the answers to other questions. In particular, if the same

question comes up later in the search, the previous answer of ‘skip’ will not necessarily be

reused.

An answer of this kind will only be used by the search algorithm to try to find a better

question to ask. When a question is skipped, the search algorithm will keep a record of

this and try to avoid asking that question again.

Our ‘skip’ answer is similar to the ‘maybe’ answer proposed by Westman and Fritzon

[53] with one important difference: we do not allow a skipped node to guide the search

47

in any way. In Westman and Fritzon’s debugger a ‘maybe’ node is initially assumed to

be erroneous. It is then later re-asked if no erroneous descendants are found. We believe

this to be the wrong approach for a debugger supporting multiple search strategies as ours

does, since this excludes parts of the search space prematurely.

It is only when all suspects in the suspect set have been skipped that skipped questions

will be asked again. The user may of course answer ‘skip’ again, but at some stage the

user has to face the inevitable and provide an answer which will advance the oracle’s

knowledge of the intended interpretation and will therefore advance the search for the bug.

We indicate to the user that a question has been previously skipped, so that they know

the above situation has occured.

Internally, skipped nodes are treated similarly to ignored nodes, until all the nodes left

in the suspect set are skipped. At this point the debugger will re-ask the user about the

skipped suspects in chronological order of when they were first skipped.

Being able to skip questions can be a big help when debugging since it means the user

can ignore very difficult questions. Often simpler questions will later present themselves,

the answers to which are sufficient to find the bug. See chapter 6 for a real example.

3.4 Visualising terms

Much work has been done on making the execution tree easier for the user to visualize

[7, 26, 29, 53, 56].

Many of these visual debuggers also support the visualisation of data structures in

the program being debugged. Westman and Fritzson [53], for example, have specialized

interfaces to display the contents of arrays in an easily browsable way. Zimmermann and

Zeller [56] have implemented a tool for the visualisation of C data structures. Their system

depicts pointer references between structures as arcs between nodes. This makes it much

easier to spot cycles than it would be by examining the actual pointer values. Lönnberg

et al [26] have implemented a similar visualisation tool. Their Matrix Visual Tester allows

visual manipulation of the data structures of a running Java program.

The Mercury debugger (both the declarative and procedural variants) support text-

based interactive browsing of terms. The user can browse the term as they would a file

system, with each functor representing a directory. The navigation commands are analo-

gous to the commands used in a Unix shell. For example ‘cd’ can be used to navigate into

a particular argument of the current functor and ‘pwd’ can be used to display the current

48

path. Paths are sequences of functor argument numbers (or field names if the argument is

named) which identify subterms, much like the paths in file systems which identify subdi-

rectories. For example the path ‘3/1’ identifies the first argument of the third argument of

the current term and ‘/2/4’ identifies the fourth argument of the second argument of the

root term. There is also a command for navigating very deep recursive data structures,

such as longs lists; the ‘cdr’ command repeatedly descends into a specified argument a

specified number of times. For example ‘cdr 5 2’ is equivalent to ‘cd 2/2/2/2/2’. An

example session is shown in figure 3.1. We also allow SICStus style syntax for navigating

terms (i.e. ˆ2ˆ1 instead of ‘cd 2/1’) Most commands can also be abbreviated by their

first letter, for example a user could enter ‘p’ instead of ‘print’. In our examples the full

commands will be shown for clarity.

typecheck goal(

unify(30, functor(cons(...), ...), ...) - goal info(erroneous, ...),

unify(30, functor(cons(...), ...), ...) - goal info(erroneous, ...),

typecheck info(

module(module sub(qualified(...), ...), predicate table(map([...]), ...),

...), call(predicate - //2), 0, ...),

typecheck info(

module(module sub(qualified(...), ...), predicate table(map([...]), ...),

...), call(predicate - //2), 0, ...), ...)

Valid? browse

browser> cd 1

browser> print

unify(30, functor(cons(unqualified(...), ...), no, ...),

(free -> free) - (free -> free), ...) -

goal info(erroneous, unreachable, ...)

browser> ^2^1

browser> print

erroneous

browser> cd ..

browser> pwd

/1/2

Figure 3.1: Example interactive term browser session.

All the visualisation and browsing tools mentioned so far can make the job of debugging

easier, since the programmer is able to explore the state of the program. However, all

these tools still suffer from a common problem: they don’t abstract the data structures

49

being represented. The programmer is forced to consider the low level representation of

every data structure in the program. This is in contrast to how most modern software is

developed, where high-level abstract data types are used by the programmer without them

having any knowledge or interest in their internal workings. Some of the tools (for example

[26, 56]) allow uninteresting data to be hidden, but this doesn’t necessarily give the user a

view of the data structure corresponding to their mental model.

As an example consider a ‘map’ abstract data type that maps arbitrary keys to arbitrary

values. There are many ways to implement such a data type; 234-trees, hash tables or red-

black trees could all be used to implement efficient maps. Most of the time the programmer

is not interested in the underlying data structure, they are only interested in looking up,

inserting and/or deleting key/value pairs from or into the map. The programmer will be

no more interested in the underlying data structures during the debugging phase than they

would be interested in these data structures in the development phase.

Suppose a programmer is trying to debug a program which uses 234 trees to implement

maps. Perhaps the programmer would like to know whether a particular value is stored in

the map, but the programmer doesn’t know much about the implementation of 234 trees.

The programmer would therefore prefer not to have to navigate the nodes of the 234 tree

in order to find the value of interest. What the programmer would like is an abstract

visualisation of the 234 tree as a table of key/value pairs.

Since 234 trees are a commonly used data structure it might be a good idea to build

specialised visualisations for them into the debugger. Indeed the Mercury debugger’s text-

based term browser does display 234 trees as lists of key/value pairs, because they are

ubiquitous in the Mercury compiler. However, there are many other examples of data

structures that are less common, or indeed are specific to only one application (for example

the EDT data structure used by our declarative debugger). It can be convenient to have

an abstract view of the data structures in a buggy program, especially if the bug is unlikely

to be in the code which implements the interface to the abstract data type.

Myers [30] makes the observation that it is often difficult to implement custom visual-

isations of data structures, since substantial extra programming effort is usually required.

The Mercury declarative debugger supports a new mechanism whereby the programmer

can relatively easily create customised visualisations of different types of data structures

in their programs.

Our technique relies on the fact that Mercury terms all have a tree structure. Each

node in the tree corresponds to a functor in the term and the children of each node are the

50

arguments of the functor. Leaf nodes are zero arity functors. This tree structure makes it

straight forward to convert any Mercury term into an XML document. This is precisely

what we allow the programmer to do. Each functor is converted to an XML element with

information about the functor (such as its type and field name) as attributes.

The advantage of using XML is that there are many existing tools and techniques for

transforming and visualising XML documents. To create a custom visualisation of a certain

type of data structure, a suitable stylesheet needs to be created which will transform the

XML version of the data structure into the appropriate format.

As an example we have implemented a stylesheet to convert 234 trees into an HTML

table of key/value pairs (a screen of the stylesheet in action is shown in figure 3.2). The

paths displayed can be used to access each key or value in the 234 tree from the text-based

interactive term browser without having to know anything about the structure of 234 trees.

Displaying the table in a web browser is particularly convenient, because it means we can

use the browser’s text search facilities to look for arbitrary strings of characters in the tree.

The key or value containing the text can then be further browsed using the text-based

interactive term browser, or another custom stylesheet.

We have also created an XSLT stylesheet for transforming arbitrary Mercury terms

into XUL tree widgets. (XUL is a graphical user interface language renderable by Mozilla

based browsers [10].) A XUL visualisation of an internal Mercury compiler data structure

is shown in figure 3.3. Because of the greater flexibility offered by the GUI we are able to

show extra information, such as field names and term paths, which would be more difficult

to display in the text-based browser. The user also has more control of how much of the

structure is shown as well as which parts are expanded or collapsed. These benefits come

with no extra development cost, since they are features of the XUL browser.

The main benefits of this scheme are the relative ease with which new visualisations

can be put together and the increasing range of software able to understand, manipulate

and display XML.

This approach also has drawbacks though. One major drawback is the size of the

generated XML documents. Some large data structures in the Mercury compiler can

result in XML documents of over a hundred megabytes in size! This is partly due to the

verbosity of XML and partly due to the fact that we export extra information like field

names and full type names that are not always used. One way to get around this is to

limit the depth of generated XML and place appropriate marker elements where the XML

document has been pruned. This would indicate to the user that the displayed document

51

Figure 3.2: A 234 tree rendered as an HTML table of key/value pairs.

is not the complete picture.

Our current integration of this scheme with the Mercury debugger is also not as flexible

as it could be. The user must manually change the stylesheet (and possibly the browser

application) each time they want to use a different visualisation. Ideally the user should

be able to associate stylesheets with different types and the debugger should know which

stylesheet to choose automatically. This is future work.

3.5 Handling I/O

In its original form, declarative debugging only works on purely declarative code — i.e.

code that has no side effects.

Declarative debugger implementations for languages with side effects have either had

to take special measures to model the side effects declaratively, or have ignored the issue

52

Figure 3.3: The generic graphical term browser showing one of the data structures used
by the Mercury compiler.

altogether.

For example Fritszon et al [16] have implemented an algorithmic debugger that works

on imperative programs. They transform the program into an equivalent program where

each procedure does not have any side effects.

Pereira and Calejo [6, 41] propose a method to debug Prolog programs that produce

output via side-effects. All the output side-effects produced during a predicate call (even

those which are backtracked over) are encapsulated in what they call a segment. The

segments for each call are presented to the user along with the question about the call.

The user is then expected to assert that a call behaves erroneously if either its segment is

wrong (i.e. it produces incorrect output) or its output arguments are wrong.

In Mercury I/O is not done via side effects, so we do not need to consider the possibility

that I/O operations were backtracked over, since this can never happen.

53

Despite this there remain problems with declarative debugging code which does I/O.

The first is how to let the user know what I/O actions a particular call performs. The

second problem stems from the need to debug large programs. When constructing the

annotated trace described in section 2.3.3 we only construct pieces of it as they are needed.

Constructing the entire trace would be infeasible for long running programs (see chapter

5 for more information on how this problem is resolved). If an earlier portion of the trace

needs to be constructed then we rewind execution to a point just before the portion of the

trace which needs to be materialized and reexecute that part of the program again, this

time collecting events into the annotated trace. If this portion of the program performs I/O,

then the I/O will be performed again. This is a problem, because it means the program

may not necessarily behave in the same way the second time around. The program could

even crash, if for example it tried to close a file which was previously closed during the

first execution.

Somogyi [46] has implemented a solution to both these problems by making I/O idem-

potent. Each primitive I/O operation performed by the program is given an I/O action

number. The input and output argument values and the name of the procedure of each

primitive I/O call are recorded in a table and indexed by the assigned I/O action number.

If execution is rewound, then the I/O operations are not reexecuted, but instead the output

argument values of the primitive call are looked up in the table and passed to the calling

procedure as if the I/O operation had been executed. By recording the current I/O action

number at each call and exit event we can also display to the user all the primitive I/O

calls which occurred during the procedure call. The correctness of the call depends on the

output of the call given its inputs as well as the correctness of all the I/O actions performed

by the call. The I/O state arguments can be thought of as two lists of I/O actions. The

input I/O state argument is a list of all the I/O actions performed before the call and the

output I/O state argument is the list of I/O actions performed by the call appended to

the input I/O state. We can then ask the user questions such as

read_and_write([...], [..., read("a"), write("a")])

Valid?

where ‘...’ represents the I/O actions executed before the call. We are able to simply

display ‘...’ to the user, since knowledge of I/O operations before the call are not necessary

to determine the correctness of the call as long as we assume the primitive I/O operations

themselves are correct. The only way a call can know what the effects of previous I/O

actions were is for the call to either execute a new I/O action that observes those effects

54

or for the call to explicitly accept arguments that describe those effects. This means that

any dependence on I/O actions executed outside the call are reflected in new I/O actions

executed during the call, or the input arguments of the call.

In our implementation we do not show the I/O actions for the call in the I/O state

argument positions as shown above, but instead list them separately as this is generally

easier to read.

To illustrate, consider the program fragment in figure 3.4 that writes out a list of strings

as an HTML table.

:- pred print_html_table(list(string)::in, io::di, io::uo) is det.

print_html_table(Items, !IO) :-

write_string("<table>\n", !IO),

print_rows(Items, !IO),

write_string("</table>\n", !IO).

:- pred print_rows(list(string)::in, io::di, io::uo) is det.

print_rows([], !IO).

print_rows([H | T], !IO) :-

write_string("<tr><td>", !IO),

write_string(H, !IO),

write_string("</td></tr>\n", !IO),

print_rows(T, !IO).

Figure 3.4: A buggy program fragment that performs I/O.

Executing the goal

print html table(["<unknown>", "Ted", "Sue"], IO0, IO) would result in the fol-

lowing output.

<table>

<tr><td><unknown></td></tr>

<tr><td>Ted</td></tr>

<tr><td>Sue</td></tr>

</table>

This output is buggy since the ‘<’ and ‘>’ characters in the string "<unknown>" should

have been replaced with ‘<’ and ‘>’ respectively.

Invoking the declarative debugger on this goal results in the session in figure 3.5.

Because a program may perform many millions of I/O actions during its execution, we

allow the user to control what events are I/O tabled from within the procedural debugger.

55

print html table(["<unknown>", "Ted", Found incorrect contour:

"Sue"], ,) print rows(["<unknown>", "Ted",

11 tabled IO actions: "Sue"], ,)

write string("<table>\n") 9 tabled IO actions:

write string("<tr><td>") write string("<tr><td>")

write string("<unknown>") write string("<unknown>")

write string("</td></tr>\n") write string("</td></tr>\n")
write string("<tr><td>") write string("<tr><td>")

write string("Ted") write string("Ted")

write string("</td></tr>\n") write string("</td></tr>\n")
write string("<tr><td>") write string("<tr><td>")

write string("Sue") write string("Sue")

write string("</td></tr>\n") write string("</td></tr>\n")
write string("</table>\n") Is this a bug?

Valid? no

print rows(["<unknown>", "Ted",

"Sue"], ,)

9 tabled IO actions:

write string("<tr><td>")

write string("<unknown>")

write string("</td></tr>\n")
write string("<tr><td>")

write string("Ted")

write string("</td></tr>\n")
write string("<tr><td>")

write string("Sue")

write string("</td></tr>\n")
Valid? no

print rows(["Ted", "Sue"], ,)

6 tabled IO actions:

write string("<tr><td>")

write string("Ted")

write string("</td></tr>\n")
write string("<tr><td>")

write string("Sue")

write string("</td></tr>\n")
Valid? yes

Figure 3.5: Finding a bug in the presence of I/O.

56

The tabled I/O actions must be in a contiguous range and all I/O actions occurring inside

a call on which the user wishes to use the declarative debugger, must be I/O tabled.

57

Chapter 4

Search Strategies

The search strategy employed by a declarative debugger decides the sequence of questions

the debugger asks in its search for the bug. The search strategy is therefore extremely

important for effective debugging, especially if the search space is large. The search strategy

should not only aim to reduce the number of questions, but should also present questions

that are easier for the user to answer.

In this chapter we explore the search strategies implemented for the Mercury declarative

debugger. We allow the user to choose which search strategy the debugger uses and to

change the strategy on the fly.

4.1 Top-down search

The top-down search strategy first asks the oracle about the root node in the EDT and

then proceeds to ask about the children. If a child is erroneous, then the search progresses

down the subtree rooted at the erroneous child, otherwise a sibling is asked about. Naish’s

version of top-down search [32] is given in figure 2.1. Lloyd [24] and Ferrand [15] also present

similar top-down debuggers. Top-down search is the simplest (usable) search strategy to

implement.

Top-down search has the advantage that it presents questions to the user (assuming

the user is acting as the oracle) in a logical order. The next question will always be either

about a child or a sibling of the call the current question is about. This means it is simple

to keep track of where the debugger is by examining the source code.

The major disadvantage of top-down search is that it may require the user to answer

an extremely large number of questions if the search space is large. This is usually the case

58

for realistic programs.

4.1.1 Variations on top-down search

Top down zooming is explored by Maeji and Kanamori [28]. In this version of top-down

search, recursive child calls are preferred. This results in successive questions about the

same predicate. This makes answering the questions easier, since the meaning of the

predicate is “cached” in the user’s mind.

Binks [1] proposes a top-down search, called heaviest first, that selects the child with the

most total number of descendant nodes. This has a similar effect to divide-and-query for

balanced trees with high branching factors. If the tree is not balanced then the search tends

to behave like top-down zooming, since recursive calls tend to have the most descendant

nodes.

Another variation that we intend to include in the Mercury declarative debugger is

exception zooming. This would prefer to ask about children that throw an exception.

Our current implementation of top-down search performs a standard top-down, left-to-

right traversal of the EDT. This type of top-down analyser has been studied extensively. We

have included a top-down search strategy for completeness and because it is a very useful

strategy when the search space is small. We can also use it as a baseline for comparing the

effectiveness of other search strategies.

It should be noted that because each mode of a predicate in Mercury is compiled to a

different procedure, where the goals in the body of each procedure are reordered to satisfy

the mode constraints, the order in which child nodes are asked about will vary for different

procedures, even if the procedures represent different modes of the same predicate. This

behaviour is not noticeable, since most predicates tend to be declared with only one mode

and the order of execution of goals is usually the same as the order that they appear in

the source code.

4.2 Divide-and-query

4.2.1 Overview

For long running programs, the sheer number of nodes in the EDT makes it often imprac-

tical to use a search strategy based on top down search. For such situations, we need a

search algorithm that can eliminate large numbers of nodes from the search space in one

59

step. The classic search algorithm designed for this task is Shapiro’s divide-and-query al-

gorithm [45]. This algorithm chooses a node in the suspect set that divides the suspect set

into two parts, each of equal weight (or as close to equal weight as possible) according to

some weighting metric. Each time the oracle supplies an answer, the weight of the suspect

set should be reduced by almost a factor of two. Given an EDT with an initial weight w,

this allows the bug to be found with O(log w) questions being asked of the oracle in most

cases.

middleweight(LastErroneousNode, StepSize) returns Middle is

CurNode := LastErroneousNode
TargetWeight := weight(CurNode) / 2
Repeat

If CurNode is the root of an implicit subtree
materialize the next StepSize levels
of the subtree rooted at CurNode

PrevNode := CurNode
CurNode := the heaviest child of PrevNode

Until weight(CurNode) < TargetWeight
If PrevNode is closer to TargetWeight than CurNode

Middle := PrevNode
Else

Middle := CurNode

Figure 4.1: Algorithm for finding the middle weight node in an EDT.

Our version of the divide-and-query algorithm is shown in figure 4.1. The greedy search

works because at each step CurNode is guaranteed to be at least as close to half the weight

of LastErroneousNode as any of its siblings. It is more similar to Hirunkitti’s version

of divide-and-query [19], which looks for the closest node to the middle, than Shapiro’s

original version [45], which isn’t always guaranteed to find the closest node to the middle.

Because we are able to approximate the weight of a node without having its entire

subtree in memory, we are able to selectively materialize the heaviest subtrees: if an

implicit root is not CurNode at any point in the algorithm in figure 4.1, its subtree won’t

be materialized. This means that the algorithm will materialize only small portions of the

EDT while searching for the middle weight node. The StepSize parameter allows us to

control the tradeoff here: higher values require more memory to store more nodes of the

60

annotated trace and the EDT, but require fewer reexecutions of parts of the program. This

trade-off is explored in detail in chapter 5.

This is a more general version of the algorithm proposed by Shapiro [45] since we allow

an arbitrary weighting to be used for each subtree. This allows us to experiment with

different weighting heuristics besides the number of nodes (which is the weighting that

Shapiro uses). Because we include succeeded, failed and aborted calls in the EDT we can

use divide-and-query to search for both wrong and missing answers as well as unhandled

or incorrect exceptions.

4.2.2 Calculating the weight of a subtree

In this section we will discuss the reasons why it is difficult to accurately calculate the

weight of a subtree in practice using the traditional weighting metric. We will then explore

some alternative weighting metrics that are easier to calculate, but still good enough to

yield effective results in most cases.

The traditional weighting metric

The most obvious weighting of a subtree in the EDT is the number of nodes in that subtree.

This metric directly reflects the number of questions represented by the tree. Shapiro [45]

has shown that using this metric, divide-and-query is query optimal in the worst case.

This weighting is easy to compute for subtrees we have in memory – we simply traverse

the subtree and count the nodes.

However, in general, we do not have the entire EDT available in memory, because this

would require too much space for long running programs, so we need a way to calculate the

weights of implicit subtrees too. Calculating the weight of an implicit subtree is, however,

not simple. To calculate the weight of an implicit subtree we might, while executing the

part of the program represented by the implicit subtree, try to count the events that would

be EDT nodes. We could then store this weight with the root node of the implicit subtree

and use it when calculating the weight of any ancestor subtrees in the EDT.

This turns out to be harder than it may at first seem. There may be calls in the implicit

subtree that produce multiple solutions. All the exit, fail and excp nodes for such calls

will be included in the EDT only if the call fails. When we are executing the program in

the implicit subtree, we will need to remember how many solutions have been produced for

each multi or nondet call, as well as the weights of the subtrees rooted at these solutions, in

61

case the call ultimately fails and we need to include all previous solutions in the EDT. This

becomes quite difficult to do without an explicit version of the entire subtree in memory.

At the least we will require memory proportional to the number of multi or nondet calls,

since for each such call we will need to remember the cumulative weights of all the subtrees

rooted at previous solutions.

For example consider the predicates p and q.

p(X) :- q(X), X > 1.

Suppose we wish to calculate the weight for the node corresponding to the result of a

call to p without having a copy of the EDT in memory. As we progress through forward

execution of the call to p, suppose q exits with the result 0. Potentially this is a child of

the call to p in the EDT but we will only know if it is when we know whether q fails inside

the call to p or not. The potential EDT, excluding all nodes corresponding to calls to ‘>’,

is shown in figure 4.2. The dashed arcs indicate that we don’t yet know if the depicted

children will be children in the final EDT or not. Suppose the subtree under the first exit

event for q has weight X. Now the generated solution of q(0) makes the body of p false,

so we retry q and get the new answer 1 (figure 4.3). Suppose the weight of the subtree

under this exit node is Y .

Figure 4.2: The potential EDT after q has produced one solution.

Figures 4.4 and 4.5 show two possible next scenarios. In the scenario in figure 4.4, the

next retry of q yields the solution 2, which causes the body of p to be true and p to exit.

In this case only the last exit is included in the EDT, so the weight of the subtree rooted

at the call to p is Z + 1.

In the scenario in figure 4.5, q produces no more solutions, causing the call to p to fail.

In this case we include all q’s previous exits as well as the fail node, so the weight of

the (failed) call to p is X + Y + Z + 1.

62

Figure 4.3: The potential EDT after q has produced two solutions.

Figure 4.4: Scenario 1, q produces another solution.

In this example we need to remember the weight X + Y in case we need to use it in

the calculation of the weight of the call to p. We have to do the same for all multi or

nondet nodes in the EDT if we wish to accurately calculate the weights of their ancestors.

If the entire EDT is available in memory, this is easy, since then we know immediately

whether a call will fail or not. If parts of the EDT are not available, we need an alternate

data structure that gives us this information. Such a data structure would duplicate the

parts of the missing EDT that involve procedures that can succeed more than once, but

would have to have a more complicated structure than the EDT itself. The design and

implementation of such a data structure seems a very high price to pay, and we would

strongly prefer not to pay it. Instead, we have looked at alternate metrics for the weight

of a subtree which are easier to calculate in the absence of an explicit subtree.

A practical approximation to the traditional weighting metric

For det and semidet code we can calculate the number of EDT nodes by simply counting

the number of descendant exit, fail and excp events (or equivalently the number of call

events, since for det and semidet code each call will have exactly one matching exit,

63

Figure 4.5: Scenario 2, q fails.

fail or excp event).

When constructing the EDT we execute the corresponding part of the program, adding

nodes to the EDT that are above a certain depth. Calls below this cut-off depth still need

to be executed, even though they aren’t added to the EDT (calls below the cut-off depth

must be executed so that subsequent exit and fail events above the cut-off depth can be

added to the EDT). When executing the program below the cut-off depth we can count

the number of exit and fail events and store this with the node at the cut-off depth in

the EDT (i.e. the root of the implicit subtree).

For implicit subtrees where multi or nondet code is executed we can approximate the

weight by counting the number of descendant exit, fail and excp events between the

event which is the root of the implicit subtree and the corresponding call event.

The weight of any subtree can then be approximated by adding the sum of all the

materialized EDT nodes in the subtree, plus the approximated weights of any descendant

implicit subtrees.

For subtrees with only det or semidet code, this is a completely accurate calculation

of the number of nodes in the EDT, since for det and semidet code each exit, fail and

excp event will appear as a node in the tree.

For subtrees which also contain nondet or multi code, the approximation is just that,

and is not guaranteed to be accurate.

In the presence of calls which could succeed more than once, however, we may violate a

property of the weights of each subtree that we wish to preserve. Namely that the weight

of the subtree should be a constant plus the total weights of all the children. We need this

property to hold to ensure that if we subtract the weight of a subtree from all its ancestors

(because the oracle asserts that the subtree is correct), then we don’t make the weight of

any ancestors negative.

64

To overcome this problem we can add the (possibly estimated) weights of any back-

tracked over solutions to all the ancestors of a node when we are building a new portion of

the EDT and discover that the previously backtracked over solutions should be included

in the EDT.

A biased weighting metric

Instead of counting the number of exit, fail and excp events only, we might count all

the descendant events (both interface and internal) in a subtree and use this as a weighting

metric.

For det and semidet code this is trivial to calculate: we simply take the difference

between the event number of the root of the subtree and the event number of the cor-

responding call node plus one — we needn’t traverse any of the subtree even if it is in

memory. We could do the same for the exit and fail count metric described in the previ-

ous section by keeping a count of the number of exit and fail events at each materialized

node in the EDT, however this would require an extra word per node as well as some extra

calculation at each event when building the EDT. We have the event numbers available at

each node already, for switching between the procedural and declarative debuggers and for

building unmaterialized portions of the EDT.

For calls that produce multiple solutions, we can approximate the number of descendant

events by adding the number of events between previous redos and exits. This is an over

approximation, since not all the events generated for previous solutions will contribute to

the generation of later solutions, i.e. some of the events may be inside backtracked-over

descendant calls.

For example, suppose a call generates the following sequence of interface events.

Event# Call# Port
...
4 3 call
...
7 3 exit
...
12 3 redo
...
17 3 exit
...

65

23 3 redo
...
45 3 fail
...

Our estimate of the weight of the subtree rooted at the final fail event will be (45 -

23 + 1) + (17 - 12 + 1) + (7 - 4 + 1) = 33. Our estimate of the weight of the subtree

rooted at the second exit event would be (17 - 12 + 1) + (7 - 4 + 1) = 10. The weight

of the first exit would be 7 - 4 + 1 = 4.

Using this over approximation, can cause the weights to become inconsistent. For

example suppose that the event number of the parent call was 3, the call failed without

producing any solutions and the event number of the parent fail was 46. Then the

approximated weight of the parent fail node in the EDT would be 46 - 3 + 1 = 44,

however the sum of the weights of the children would be at least 33 + 10 + 4 = 47.

To avoid this situation where the weight of a subtree is less than the sum of the weights

of the child subtrees, we need to add any double counted events to ancestor subtrees. We

can do this on the fly if and when we encounter such a situation. This situation would

only arise in the presence of multi or nondet code. As we mentioned such code is quite

rare in practice.

An interesting property of this weighting metric is that it is biased towards nodes whose

calls generate more internal events. Calls which generate more internal events are generally

to predicates with more complicated bodies (i.e. bodies with more disjuncts, switches, if-

then-elses, etc). It seems likely that predicates with more complicated bodies would be

more likely to contain bugs, so this bias would seem justified.

To illustrate the effect of the biased weighting metric, consider the program fragment

in figure 4.6. The body of the predicate animal is more complex than the body of the

predicate make list. Let’s assume that animal has a bug in it (which seems pretty likely

given its definition). Two debugging session are shown in figures 4.7 and 4.8. Both use

divide-and-query to debug the call make animal list(6, 3, 3, 3,). Figure 4.7 shows

the results of using the traditional weighting metric of the number of nodes (which, since

there is no non-deterministic code, is simply the number of descendant calls). Figure

4.8 shows the same session, but using the biased weighting metric. Notice that with the

biased weighting metric there is one less question about make list. This is because the

subtree rooted at the call to animal is assigned a greater weight than it would be with the

66

traditional weighting metric. The three if-then-elses and numerous disjunctions generate

more internal events in the call to animal which gives it a greater weight.

:- pred animal(int::in, int::in, int::in, animal::out) is det.

animal(Legs, Eyes, Arms, Animal) :-

(if (Legs = 8 ; Arms = 8 ; Eyes = 8) then

Animal = spider

else if Eyes = 1 then

Animal = cyclops

else if (Arms = 2 ; Eyes = 2 ; Legs = 2) then

Animal = human

else

Animal = ant

).

:- pred make_animal_list(int::in, int::in, int::in, int::in,

list(animal)::out) is det.

make_animal_list(N, Legs, Eyes, Arms, List) :-

animal(Legs, Eyes, Arms, Animal),

make_list(N, Animal, List).

:- pred make_list(int::in, T::in, list(T)::out) is det.

make_list(N, X, L) :-

(if N = 0 then

L = []

else

make_list(N - 1, X, L1),

L = [X | L1]

).

Figure 4.6: Example program fragment used to compare the biased weighting metric with
the usual weighting metric.

Admittedly this is a very contrived example, but it does serve to show the effect of

the biased weighting metric. With longer running programs which produce more events

the effect will be less obvious. The point is that it is unlikely to have a detrimental effect

on the debugging session. Its efficiency in terms of execution speed make it a worthwhile

alternative to Shapiro’s original divide-and-query.

67

make animal list(6, 3, 3, 3, [ant, ant, ant, ant, ant, ant])

Valid? no

make list(3, ant, [ant, ant, ant])

Valid? yes

make list(5, ant, [ant, ant, ant, ant, ant])

Valid? yes

animal(3, 3, 3, ant)

Valid? no

Found incorrect contour:

animal(3, 3, 3, ant)

Figure 4.7: Debugging session using the traditional weighting metric.

make animal list(6, 3, 3, 3, [ant, ant, ant, ant, ant, ant])

Valid? no

make list(4, ant, [ant, ant, ant, ant])

Valid? yes

animal(3, 3, 3, ant)

Valid? no

Found incorrect contour:

animal(3, 3, 3, ant)

Figure 4.8: Debugging session using the biased weighting metric.

The effect of oracle answers on the weight calculation

‘Yes’ or ‘inadmissible’ oracle answers have the obvious effect of causing the weight of the

subtree rooted at the correct or inadmissible node to be subtracted from the weights of

its ancestors. Since all the ancestors must already be materialized (otherwise the search

would not have been able to progress to the node about which the question was asked), we

can store the new weight at each ancestor.

The effect of an ‘ignore’ answer is a little more subtle. We do not wish to remove the

weight of the subtree rooted at the ignored node, since there may be buggy nodes in this

subtree. Instead we remove the difference between the weight of the subtree rooted at

the ignored node, and the sum of the weights of the subtrees rooted at all the children of

the ignored node. (In the case of our biased weighting metric this will be the number of

internal events plus interface events with the same call sequence number as the ignored

68

node).

4.2.3 Related work

Shapiro’s original method of rerunning the erroneous part of the program with a modified

interpreter each time the middle node needs to be found is impractical for long running pro-

grams. Ironically, long running programs which produce large search spaces are precisely

the programs for which divide-and-query is most useful.

Plaisted [42] proposed a more efficient version of Shapiro’s divide-and-query algorithm

for Prolog. His technique involves saving the input and output values of calls at carefully

chosen points in the call tree. The oracle is queried about only the saved calls until a

much smaller subtree containing no saved calls is left. The process is then repeated on

the remaining subtree. This greatly reduces the time spent reexecuting the program. The

nodes are chosen in such a way as to approximate Shapiro’s divide and query algorithm.

This approach has two main drawbacks. First, the tree has to first be transformed into

a new tree that has a constant branching factor of two. To achieve this the meanings of

the questions at each node must be modified. This results in questions of the form “If

procedure P was called with such and such inputs, then should it be possible to reach a

state after Q returns in which the variables accessible to P have such and such values?”

for each child call Q of call P . Such questions are more complex than ours and would seem

to require a knowledge of the operational semantics of the program, something we would

prefer to avoid. Second, because only selected nodes are materialized, the set of search

strategies that can be applied are severely limited. For example we could not perform the

usual top-down search or do subterm dependency tracking. In our practical experience

this loss of flexibility would be intolerable.

4.3 Subterm dependency tracking

Most previous declarative debuggers have asked users to say, for each atom, simply whether

the atom is valid, erroneous or inadmissible. By accepting only these three answers, they

fail to gather information that could improve the search significantly. This information

is the precise difference in the user’s head between the correct behavior of the predicate

concerned and the actual behavior.

When users say that a particular atom is erroneous, it is because they know, at least

implicitly, what the set of correct solutions is for the call, and they see that the output

69

arguments of the actual atom computed by the program differ from output arguments in

all the correct solutions. Frequently, the actual output is almost right: most parts of most

output arguments are correct, and only a small number of parts in just one or two output

arguments are wrong. However, unless the debugger allows users to specify exactly which

parts of which output arguments are wrong, the search inside the computation represented

by the atom will not be able to focus on the part of the computation that computed the

wrong part of the erroneous atom.

Similarly, when users say that a particular call is inadmissible, it is because they know

that some part(s) of some input argument of the call fail a precondition of the call. The

debugger can focus on the part of the computation that generated that wrong subterm

only if the user can tell the debugger which part of which input argument violates the

precondition.

The above observation was first made by Pereira with his rational debugger [40]. Weiser

[52] provides empirical evidence which shows that the origins of data values are valuable

in debugging.

The Mercury declarative debugger includes a mechanism that allows users to mark

function symbols in arguments when browsing an atom that the declarative debugger is

asking about. If they mark a subterm of an output argument, they say that the atom

is erroneous. If they mark a subterm of an input argument, they say that the atom is

inadmissible. In both cases, the system will use the information about the identity of

the wrong subterm to guide the search for the bug. Specifically, the system will start

asking questions about the atoms that generated the marked subterm, since it is very

likely that either these atoms have bugs inside their call tree, or they were given incorrect

information themselves. (The third possibility, which in our experience is less likely, is that

this computation is correct and was given correct inputs, but its output was supposed to

be processed further before being passed on, and this post-processing is missing.)

Pointing out an incorrect subterm generally doesn’t require much extra effort on the

part of the user (if the user is acting as the oracle), because they would have had to have

known which subterm(s) were incorrect in order to answer the question accurately in the

first place. We allow the user to mark an incorrect subterm from within the interactive

term browser, which is the tool the user would typically use to explore large terms anyway.

Focusing the search onto a wrong subterm can be a huge win. If the atom is large, and

only a small part of it is incorrect, then not exploring the parts of the computation that

generated the correct parts of the atom will avoid a large number of questions that don’t

70

have anything to do with the bug; the larger the atom, the more unnecessary questions can

be avoided. We are acutely aware of this point, because we use the Mercury declarative

debugger to debug the Mercury compiler, many of whose predicates pass around multi-

megabyte data structures as arguments.

Sometimes it can be hard to know which subterm to mark. Consider a predicate that

expects its input to be a sorted list. If it is given the list [1, 3, 2], is the wrong subterm

the subterm 2 or the subterm 3? Or is it the cons node of the sublist [3, 2]? All

of these subterms could be replaced with different subterms which would make the list

sorted. Which one should the user mark? The answer is that it depends on which subterm

the user is more curious about. Marking the 3, for example would direct the user to the

code that first generated the 3, which could be in a very different place to the code that

generated the cons node. If the user suspects that the 3 shouldn’t appear in the list at

all, then the 3 should be marked. If the elements in the list are correct, but the order

is incorrect, then it is more likely that the code which created the incorrect cons node is

wrong and the user should mark this term.

4.3.1 A short example

The following example illustrates how the subterm dependency tracking feature of the

debugger is used.

:- pred get_payment(loan::in, int::in, payment::out) is det.

get_payment(Loan, PaymentNo, Payment) :-

get_payment_amount(Loan, PaymentNo, Amount),

get_payment_date(Loan, PaymentNo, Date),

Payment = payment(Date, Amount).

Suppose that get payment produces an incorrect result and the declarative debugger

asks the following.

get_payment(loan(...), 10, payment(date(9, 10, 1977), 10.000000000000)).

Valid?

If we know that this is the right payment amount for the given loan, but the date is

incorrect, we can mark the date(...) subterm and the debugger will then ask us about

get payment date.

get payment(loan(...), 10, payment(date(9, 10, 1977), 10.000000000000)).

71

Valid? browse

browser> cd 3/1

browser> print

date(9, 10, 1977)

browser> mark

get payment date(loan(...), 10, date(9, 10, 1977)).

Valid?

In this example irrelevant questions about get payment amount are avoided.

get payment date was only one level down in the tree, however it could have been at

a much deeper level. In general the further away the node where the subterm is bound,

the greater the number of questions that can potentially be skipped.

4.3.2 The subterm tracking algorithm

Our method of tracking a marked subterm to its ultimate source can be best described

in two steps: the algorithm for tracking subterms within a single procedure call, and the

algorithm for tracking subterms across calls.

Consider an erroneous atom in which one subterm of an output argument is marked as

wrong. (We will consider inadmissible calls later.) The first task in tracking the marked

subterm is to find out what goal in the body of the procedure generated that subterm.

The Mercury mode system’s knowledge of where each variable is bound makes this

task significantly easier than it would be in most other languages. If the program is

compiled with the right options, the compiler will include a representation of the bodies

of all procedures in the executable. This representation includes, for each goal, the list of

variables bound by that goal.

For example, consider the following predicate.

:- pred rational_add(rational::in, rational::in, rational::out) is det.

rational_add(A, B, C) :-

A = r(An, Ad),

B = r(Bn, Bd),

lcm(Ad, Bd, Cd),

CA = Cd // Ad,

CB = Cd // Bd,

Ap = An * CA,

Bp = Bn * BA,

Cn = Ap + Bp,

C = r(Cn, Cd).

72

The mode information recorded for rational add can tell the declarative debugger

immediately that the producer of the Cd part of the output argument is the call to lcm

(the least common multiple predicate), and that the producer of the Cn part of the output

argument is the call to the builtin function +.

This works for all predicates whose body is a simple conjunction. However, most

predicates have more complex bodies that include if-then-elses and/or disjunctions.

:- pred search(bintree(K, V)::in, K::in, V::out) is semidet.

search(Tree, K, V) :-

Tree = tree(K0, V0, Left, Right),

compare(Result, K0, K),

(if Result = (=) then

V = V0

else if Result = (<) then

search(Right, K, V)

else

search(Left, K, V)

).

In this case, the mode system knows that V is produced by the unification V = V0 or by

one of the two recursive calls, exactly one of which is executed in the process of computing

a solution, but it can’t know which one was executed in any specific case. However, the

debugger can, since it has access to the execution history of the call. If during the relevant

call the first condition failed and the second succeeded (i.e. if Result = (<)), the debugger

will know it, because it will have seen an else event for the outer if-then-else and a then

event for the inner if-then-else (it knows which goal the else and then events correspond

to because of the goal paths stored at the else and then nodes in the annotated trace). It

can thus reconstruct the sequence or conjunction of goals executed to compute the solution.

This sequence is a kind of dynamic slice [21, 51]:

search(Tree, K, V) :-

Tree = tree(K0, V0, Left, Right),

compare(Result, K0, K),

Result = (<),

search(Right, K, V).

While procedure bodies may contain conjunctions, disjunctions, negations and if-then-

elses nested arbitrarily, with the atomic goals being unifications and calls, the slice we

compute is always a conjunction in which all conjuncts are either unifications, calls or

73

negated goals and negated goals cannot bind any variables visible from the outside (this

restriction being necessary for the safety of negation as failure). You can boil a procedure

body down to such a slice by discarding those arms of if-then-elses and disjunctions which

did not contribute to the solution being considered.

The slice we search through in the body of the call corresponds exactly with the goals

lying on the contour leading up to the exit event for the solution (see section 2.3.2). We

can use the step left in contour function given in figure 2.12 to step through the contour

and gather up the goals responsible for generating the output of the call.

The marked subterm is identified by the argument number and position within that

argument. The position is a subterm path, which is a sequence of argument numbers. A

subterm path can be used to uniquely identify a subterm in a term. The first number in

the sequence represents the position of the subterm in the top level functor of some term.

Successive argument numbers give the functor argument number in which the subterm

appears for terms nested in the top level term. For example the subterm path of the

second f(a) in the term h(f(a), g(h(b, c, f(a))), b) is [2, 1, 3]. This is exactly the path

which would be used to navigate to the term using the interactive term browser (described

in section 3.4), except we would write “cd 2/1/3” or “ˆ2ˆ1ˆ3” instead of “[2, 1, 3]” in the

interactive term browser.

The algorithm for tracking subterm dependencies within procedure bodies is imple-

mented as the origin function, shown in figure 4.9. This algorithm relies on the fact that

the compiler converts the bodies of predicates to what we call superhomogeneous form.

In this form, multiple clauses are converted to disjunctions in the body of the completion

of the predicate, all predicate heads and calls have distinct variables as arguments, all

unifications are explicit, and each unification contains at most one function symbol. The

mode system classifies all unifications into four categories:

• unifications of the form X = f(Y1, ..., Yn) in which the Yi are input and the X is

output. We write these construction unifications as X ֋ f(Y1, ..., Yn).

• unifications of the form X = f(Y1, ..., Yn) in which the X is input and the Yi are

output. We write these deconstruction unifications as X ֌ f(Y1, ..., Yn). (Actually,

it is possible for some of the Yi to also be input, but that is of no relevance here.)

• unifications of the form X = Y in which one variable (say X) is input and the other

is output. We write these assignment unifications as X := Y .

74

origin(Conj, Var, SubtermPath) returns Origin is

Find the goal G that produces Var in Conj
If G is a construction X ֋ f(Y1, ..., Yn) then

Var must be X
If SubtermPath = [] then

Origin := unify(G)
Else

SubtermPath must be [First | Rest]
First must be in 1..n
Origin := origin(Conj, YF irst, Rest)

Else if G is a deconstruction X ֌ f(Y1, ..., Yn) then
Var must be one of the Yis, say Yk

Origin := origin(Conj, X, [k | SubtermPath])
Else if G is an assignment unification X := Y then

Var must be X
Origin := origin(Conj, Y , SubtermPath)

Else if G is a call p(A1, ..., An) then
Var must be one of the Ais, say Ak

Origin := call(G, k, SubtermPath)
Else

Var must be an input argument
Let ArgNum be the number of that input argument
Origin := head(ArgNum, SubtermPath)

Figure 4.9: The origin function.

• unifications of the form X = Y in which both variables are input and have atomic

types. We write these test unifications as X == Y .

All other unifications are either (a) transformed into calls to compiler-generated unifica-

tion predicates or (b) disallowed, which results in either that goal being reordered relative

to other conjuncts or in an error message. For example, a unification of two non-atomic

ground terms is transformed into a call, while a unification of two free variables is delayed

until one variable is bound, if that is possible.

Conj contains only calls, unifications and negated goals. Among unifications, only con-

struction, deconstruction and assignment unifications can bind variables; test unifications

cannot. Negated goals also cannot bind variables. The cases handled by the origin function

are therefore all the cases.

75

The origin function returns one of three possible functors:

• unify(U), indicating the subterm is bound by the unification U appearing in Conj.

• call(C, k, P), indicating that the call C, appearing in Conj, binds the subterm in its

kth argument. The path of the subterm in this argument is P .

• head(k, P), indicating that the subterm is passed as input to the call which has Conj

in its body. The subterm appears in the k argument and at path P in this argument.

Consider the rational add example from before, and suppose we want to find the origin

of the computed numerator. Since the numerator is the first argument of r, the declarative

debugger calls origin(Body, C, [1]), where Body is the body of the clause. The goal

that produces C is C = r(Cn, Cd). Since this is a construction unification and the path

isn’t empty which means the unification doesn’t create the subterm, we call origin(Body,

Cn, []), which finds that the origin is the call to the builtin addition function.

If we want to find the origin of the computed denominator, the declarative debugger

calls origin(Body, C, [2]). This time, the processing of C = r(Cn, Cd) leads to the

recursive call origin(Body, Cd, []). This tells us that the origin is the third argument

of the call to the lcm predicate.

This algorithm can be adapted trivially to handle the dependency tracking needs of

inadmissible calls. There are only two differences.

• The conjunction we give it as the second argument is from the body of the caller of

the marked atom, not the body of the predicate involved in the marked atom itself.

• We need to use the modified version of the step left in contour function presented in

section 2.3.4 (figure 2.14) to collect all the atomic goals in the conjunction we pass to

the origin function. This is because an input subterm can be passed into a negated

goal, though a negated goal cannot produce any output. We need to track the origin

of the input subterm through these negated goals.

Consider the all pairs are in table predicate below. This predicate checks whether

Struct contains a Pairs element such that all the key/value pairs in Pairs in are present

in Table.

:- pred all_pairs_are_in_table(struct(K, V)::in, map(K, V)::in) is semidet.

all_pairs_are_in_table(Struct, Table) :-

76

extract_pairs(Struct, Pairs),

not (

list_member(Key - Value, Pairs),

not map_search(Table, Key, Value)

).

The part of the procedure body after the call to extract pairs tests whether

list member(Key - Value, Pairs) implies map search(Table, Key, Value). The

Mercury compiler applies the equivalence A⇒ B ≡ ¬(A ∧ ¬B) yielding the code above.

If a call to map search is inadmissible and one of its input arguments is marked, then in

the call to the origin function, the conjunction leading up to that call and the corresponding

head, will be

all pairs are in table(Struct, Table) :-

extract pairs(Struct, Pairs),

list member(Key - Value, Pairs),
...

If the origin function returns a unification, we have found the true origin of the subterm

we are tracking. If it returns a reference to an argument in the clause head, then the true

origin is in a sibling call to the left. We can take another step towards that true origin

by marking the indicated subterm of the indicated argument (which must be input) and

invoking the origin function on the conjunction leading up to that call, stepping one level

up in the EDT.

If a call to origin returns a reference to a call, then the true origin is somewhere probably

in the subtree below the call, and we can take another step towards that true origin by

marking the indicated output argument of the call and invoking the origin function on the

conjunction leading up to the exit event that computed that atom, stepping one level

down in the EDT.

Even if a call to the origin function returns a reference to a call, it is possible that

the true origin is not somewhere in the subtree below the call, because it is possible that

the marked output argument of the call was simply copied from an input argument. In

such cases, our dependency tracking algorithm will first follow the subterm down the EDT

and then back up again, to get back to the body of its caller. However, this time it will

be searching for the origin of a different variable in that scope, and the producer of that

77

track(Node, ArgNum, Path, StepSize) returns BindingNode is

If ArgNum is an output argument of the atom at Node
(this can only happen if Node is an exit node)

Let CurNode := Node
If CurNode is an implicit root

materialize the next StepSize levels of the subtree rooted at CurNode
Let Conj be the conjunction of goals along the contour leading up to CurNode
Let Var be the ArgNum’th argument of the head of Node’s predicate

Else
ArgNum must be an input argument of the atom at Node

(so Node could be an exit, fail or excp)
Let CurNode be Node’s parent in the EDT
Let Conj be the conjunction of goals in the body of CurNode’s predicate

along the contour(s) leading up to the call for Node
Let Var be the ArgNum’th argument of the call atom

for Node in the body of CurNode’s predicate

Let Origin := origin(Conj, Var, Path)
If Origin is call(SubAtom, SubArgNum, SubPath)

There must be exactly one exit node corrsponding to SubAtom
on the contour(s) used to construct Conj

Let SubNode be this exit node
SubArgNum indicates one of SubAtom’s output arguments
BindingNode := track(SubNode, SubArgNum, SubPath, StepSize)

Else if Origin is head(HeadArgNum, HeadPath)
BindingNode := track(CurNode, HeadArgNum, HeadPath, StepSize)

Else
Origin must be unify(G)
BindingNode := CurNode

Figure 4.10: The track function.

variable will be to the left of the call the algorithm dived into and out of. This guarantees

that the algorithm makes progress.

The dependency tracking algorithm is shown in figure 4.10. It returns the node in the

EDT in which the subterm appearing in the ArgNum’th argument of Node at path Path

is bound by a construction unification.

In general, the dependency tracking algorithm may make many steps both up and down

78

in the EDT in its search for the unification that creates the subterm being tracked. The

depicted track function stops only when it finds the construction unification which binds

the subterm it is tracking. In practice there are two other conditions which cause the

track function to stop tracking a subterm (these extra conditions are not shown in figure

4.10 merely for simplicity). First, it cannot step into predicates whose bodies it doesn’t

have access to. This can happen either if the module containing that predicate wasn’t

compiled with the option that tells the compiler to include predicate body representations

in the executable, or if the predicate is a Mercury builtin predicate or is defined not in

Mercury but in a foreign language. (The Mercury foreign language interface allows Mercury

predicates to be defined in other languages such as C.) Second, the subterm dependency

tracking algorithm will not take a step that would take it above the current suspect set,

since there is no point in asking questions about nodes there. If necessary, it will take

steps that take it below the suspect set, into the non-suspect regions rooted at correct or

inadmissible EDT nodes. If tracking the subterm leads out of such non-suspect regions,

we carry on as usual. If the subterm being tracked was created in such a non-suspect

region, we return the last suspect which we tracked the subterm through before leaving

the suspect set.

4.3.3 Tracking a subterm through higher order calls

To understand the problem with tracking a subterm through a higher order call, let us

first consider an example. Suppose we have the predicates p, add, map and one as defined

below.

:- pred p(list(int)::out) is det.

p(L) :-

one(One),

map(add(one), [1, 2, 3, 4, 5], L).

:- pred add(int::in, int::in, int::out) is det.

add(A, B, A + B).

:- pred map(pred(T, T), list(T), list(T)).

:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).

map(P, [H0 | T0], [H | T]) :-

P(H0, H),

map(P, T0, T).

79

:- pred one(int::out) is det.

one(10).

map transforms the list in its second argument to the list in its third argument by

applying the higher order term in its first argument to each element. add simply adds its

first two arguments to produce its third argument. one is supposed to unify its argument

with the number one, but is buggy. The predicate p curries add to form a new predicate

which unifies its second argument with its first argument plus one. It then passes this new

predicate to map to produce the list [11, 12, 13, 14, 15].

Suppose we wish to track the first argument of the atom add(10, 5, 15), appearing

as a descendant of a call to p, to its source using the track function (figure 4.10). Since

the first argument is input we construct the slice leading up to the (higher order) call to

add(10, 5, 15) in map, which turns out to be the empty slice, since there are no goals

before the higher order call. So in the track function we compute Conj to be ∅. However

we cannot find a value for Var. The call atom for the exit node produced by add(10,

5, 15) is P(H0, H). Following the algorithm blindly would mean we set Var to H0 which

would be wrong.

The solution is to treat the higher order call P(H0, H) as the deconstruction unification

P ֌ add(A) (where the variable A contains the 10 we are tracking). We then proceed to

track the subterm at path [1] in the variable P. (i.e. we treat the higher order term P as if

it were a regular first order term).

Eventually repeated application of the origin function will lead to the goal

map(add(One), [1, 2, 3, 4, 5], L). In superhomogeneous form this would be broken

up into several atomic goals, one of which would be the unification P = add(One), where

the first argument passed to map is constructed by currying the add predicate. For the pur-

poses of subterm tracking we can treat this as the construction unification P ֋ add(One),

which means we now track the subterm in the variable One with its path in that variable

being []. This leads us to the actual origin of the first argument of the atom add(10, 5,

15), which is the call to one.

Applying the declarative debugger to the above example gives the following output.

add(10, 5, 15)

Valid? browse 1

browser> mark

one(10)

80

Valid?

4.3.4 Using incorrect subterm information

Once the oracle has asserted that a particular subterm in a node in the EDT makes the

node inadmissible or erroneous, we can call the track function as we described above and

locate the node in which the subterm was bound. We define the dependency chain as

the sequence of EDT nodes corresponding to the atoms returned by successive calls to

the origin function made by the track function. The first node in the dependency chain

will be the node that the oracle asserted was erroneous or inadmissible because of an

incorrect subterm. The last node will correspond to the node where the subterm was

initially constructed.

Our current implementation asks the oracle about the correctness of the node in which

the incorrect subterm was bound, provided the node wasn’t previously eliminated from

the suspect area If tracking was stopped because of missing information or because the

origin of the subterm lies outside the suspect set, then we ask about the last node on the

dependency chain that is in the suspect set. We also tell the user the location in the source

file of the construction unification that bound the subterm. This behaviour is easy for the

user to understand since it is predictable and gives the user some control over the bug

search — they can direct the bug search to the call responsible for binding a particular

subterm appearing in an atom.

If the oracle then asserts that the node in which the incorrect subterm was bound is

erroneous, then the search will continue down the new erroneous subtree, using the same

search strategy as before the incorrect subterm was pointed out by the oracle.

If the binding node is not erroneous then it seems likely that the bug lies somewhere on

or near the dependency chain. Thus a search strategy that favours nodes on the dependency

chain if the user asserts that the binding node is correct would seem to be a good idea.

As a first attempt to implement such a search strategy we currently perform a binary

search on the path between the binding node and the last erroneous node if the oracle

asserts that the binding node is correct. This effectively does a binary search on a modified

version of the dependency chain if the marked subterm is output. The modified dependency

chain has all the nodes of the original chain, except nodes where the subterm was passed

in and out of without any modification. This strategy has not proved particularly effective

in practice and other strategies are suggested in chapter 7.

81

4.3.5 Related work

The idea of focusing the search on a marked subterm is not new. It was first proposed two

decades ago by Pereira [40], who named it rational debugging. Pereira’s implementation

worked by modifying the usual Prolog unification algorithm to keep track of where each part

of the output was bound, effectively recording the entire history of the program execution.

This idea has been applied several times since then. For example, Sparud and Runciman

[49] used redex trailing to implement subterm dependency tracking for Haskell. Redex

trails record backward data dependencies between computed values in the program and

so can be used to trace an incorrect result to its source. Recently redex trails have been

augmented with additional information which allow for more flexible views of the trail [8,

50]. Specifically the augmented trail can be used to do normal top-down style algorithmic

debugging as well as tracking the origins of values. Some experimental debuggers for Java

[9, 23] can also find out where a particular variable was last assigned, their equivalent of

subterm tracking.

Unfortunately, this approach has significant overhead, in both space and time. The

space overhead in particular is a killer; a program running for a minute or two can generate

enough data to overflow memory or even disk capacity (since most disks are always close

to full). The difference from the standard execution algorithm is itself a problem: the code

for recording execution history is a large body of code that must be maintained, and due

to differences in data formats, most of these systems do not allow history recording to be

switched on for only part of a program or program run.

By contrast, the static availability of mode information in Mercury allows our subterm

dependency tracking algorithm to work without a complete history of execution, which

makes the system much more practical. We don’t need any changes to the runtime sys-

tem; the only two things we needed to add to our existing system to support dependency

tracking were compiler support for recording procedure bodies in the executable and the

algorithms in the debugger to interpret them. In a sense, we made virtue out of necessity.

While Pereira could modify the general purpose unifier to keep track of dependencies, we

could not, since the Mercury runtime doesn’t have a general purpose unifier. The only

unifications allowed in Mercury programs are one-way matches1, and all matches are com-

piled into sequences of primitive operations such as constructions and deconstructions.

Recording history at runtime would therefore have demanded huge changes in the code

1This is changing as we add constraint solving capabilities to Mercury, but we don’t support the
debugging of constraint code just yet.

82

generator. As it is, the only cost our algorithm imposes when not being used is the cost

of storing representations of procedure bodies, which leads to larger executables but not

to slowdowns (except possibly through cache effects). As an indicator of this space cost,

consider the Mercury compiler. Normally, its executable is 8.5 Mb in size; enabling debug-

ging increases that to 47 Mb. Adding representations of procedure bodies, which is the

information needed only by the dependency tracking algorithm, increases it further to 57

Mb, a relative increase of 22%.

The dependency chain we compute is a form of inter-procedural dynamic slice [20, 21,

51], with the slicing criterion being the contribution to the value of the marked subterm.

Unlike many applications of slicing, we don’t need to construct an executable extract of

the program; we just construct a sequence of EDT nodes.

Schoenig and Ducassé [44] propose a slicing technique for Prolog programs that yields

executable slices based on a static slicing criteria. That work has different goals to ours.

Schoenig and Ducassé wish to produce an executable slice which has the same (partial)

declarative and operational semantics (with respect to the slicing criteria) as the origi-

nal program. On the other hand we are only interested in computing a dynamic, non-

executable, backslice for one particular value (or subvalue) of a variable. The combination

of the single-assignment nature of Mercury and the static availability of mode information

makes the algorithm for constructing our kind of slice particularly simple and cheap to

execute. Another difference is that Schoenig and Ducassé’s slicing criteria is limited to the

argument of a literal in the body of a clause, whereas we compute a dynamic backslice

based on an arbitrarily deeply nested subterm. This makes our method more suited to

algorithmic debugging. This is because the outer functors of arguments in a literal are

normally not computed very far away from the literal, where as a subterm in an argument

of a literal could be created some distance from the literal. This means we can generally

make bigger jumps in the search tree if we allow the slicing criteria to be the subterm of

an argument, instead of just the argument. This also generally results in simpler questions

because the subterms will be smaller than their enclosing terms.

Fritzson et al have developed a debugger for an imperative language that combines slic-

ing with algorithmic debugging [16]. Their Generalized Algorithmic Debugger has separate

components for computing the slice and for doing algorithmic debugging on the execution

tree. If the user asserts that the value of a variable is wrong, the backslice with respect

to that variable is computed and all nodes in the execution tree not on that slice are

eliminated. Algorithmic debugging then proceeds as normal on the reduced tree. They

83

therefore make use of the computed slice in a different way to us. They use the slice to

further prune the debug tree, something which we do not currently do, because we want to

retain maximum flexibility. We cannot simply eliminate nodes that are not on the depen-

dency chain, since, although the subterm does not pass through these nodes, they may still

influence the value of the subterm (for example by failing instead of succeeding, causing

a different branch of an if-then-else to execute). The slice computed in the Generalized

Algorithmic Debugger is more general and so nodes not on the slice can be eliminated.

Another difference is that we zoom in immediately on the source of the incorrect value

which in most cases results in much simpler questions and homes in on the bug quicker.

Fritzson et al also do not seem to be able to determine the origin of a substructure of a

larger structure as we are able to do.

84

Chapter 5

Resource considerations

In this section we will consider some of the technical problems with using the declarative

debugger on large, long-running programs.

The main problem is that, for such programs (such as the Mercury compiler, which can

generate hundreds of millions of events) it is infeasible to store the entire annotated trace

in memory at once.

The memory cost of collecting a large number of events in the annotated trace is difficult

to predict. Each annotated trace node can consume between three and ten words. Each

call and exit event will also maintain references to the argument values at the time of the

call or exit as well as flags indicating whether each argument was ground at the time of

the call or exit and whether it is a user visible argument (the Mercury compiler may add

extra, non-user-visible arguments to procedures; for more details see [12]). This all adds

five extra words per argument for each call and exit event. It also prevents the garbage

collector from recycling the memory occupied by the argument values. So in storing call

and exit events in the annotated trace we introduce a kind of memory leak, the effects

of which will vary depending on the sizes of the values passed around by predicates in the

program, how frequently new values are created, and how frequently previously created

values would become garbage under normal conditions.

To avoid storing the entire annotated trace in memory at once we can build pieces

of it as they are needed. The downside to this is that parts of the program need to be

reexecuted each time we want to build a new piece. We have a space-time trade-off: if we

store larger portions of the annotated trace in memory then the program will need to be

reexecuted less often, but the memory consumption will be higher. On the other hand if

we store smaller pieces of the annotated trace in memory then the memory cost will be

85

lower, but the program will need to be reexecuted more often.

We would like to be able to parameterize this space-time trade-off in an easily pre-

dictable way. This would allow predictable adjustment of the space-time trade-off accord-

ing to available memory and CPU power.

5.1 An overview of the events gathering

mechanism

To generate an annotated trace for a call the call must be reexecuted and the resulting

events collected. Not all the events need be collected though. We may collect a subset

of the events generated by the call and ask the declarative debugger to try to find a bug

in one of these. If the declarative debugger needs to explore events not collected the first

time around, then the missing events can always be added by reexecuting the appropriate

call.

On each reexecution of a call we require the set of events gathered during that run to

form a tree (the EDT) which the declarative debugger can use to search for bugs. It is

no good to collect, for example, every third event, since in general these events cannot be

combined to form a coherent EDT. For each node in the EDT derived from a generated

portion of the annotated trace we require that either all the children of the node are present

in the annotated trace, or none of them are present. If none of them are present then we

mark the node as an implicit root. An implicit root is the root of a subtree in the EDT

whose nodes have not been materialized in the annotated trace.

If the declarative debugger needs to search the nodes in an implicit subtree, the call

corresponding to the exit, fail or excp event at the implicit root must be reexecuted.

To do this we use the machinery of the procedural debugger’s ‘retry’ command [47] and

I/O tabling [46] to rewind the state of the program to a point just before the call event

corresponding to the exit, fail or excp event at the root of the implicit subtree. We then

proceed to reexecute the program from that point, gathering events into the annotated

trace, until we arrive at the exit, fail or excp event at the implicit root.

We decide on a depth limit before reexecuting the call. Events below this depth limit

are not included in the annotated trace, while those at or above the depth limit are. The

general algorithm we use to decide which events are to be added to the annotated trace on

a particular run is depicted in figure 5.1 (this algorithm is taken from [4]).

Here depth limit controls the depth of each generated portion of the annotated trace (or

86

build annotated trace(call number, end event, depth limit) returns trace is

trace := NULL

inside := false
Rewind execution to a call before or equal to call number
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) ≤ depth limit

trace := create annotated node(e, trace)
If e is an exit, fail or excp and depth(e) = depth limit

trace := mark as implicit root(e, trace)
If e is an exit, fail or excp event for call call number

inside := false
Until the event number of e is end event

Figure 5.1: Algorithm for building the annotated trace to a predefined depth limit.

rather, the depth of the EDT represented by the generated portion of the annotated trace).

The depth function returns the depth of an event relative to the root of the portion of the

EDT currently being materialized. Initially end event will be the event where the ‘dd’

command was issued in the procedural debugger. On subsequent invocations end event

will be the event at the root of an implicit subtree we wish to materialize. call number is

the call sequence number of the call corresponding to the event at the root of the implicit

subtree. The declarative debugger keeps a reference to every list of annotated trace nodes

generated by calls to build annotated trace in a structure which allows it to view the

separate traces as one complete EDT.

The algorithm is not actually implemented as an explicit loop as depicted in figure

5.1, but instead the target code generated by the Mercury compiler is instrumented with

callbacks to a function that implements the body of the loop and the variables are global

variables in the target imperative language. When the event with event number end event

is executed the runtime system calls the analyser, which searches the generated trace for

bugs (and is implemented entirely in Mercury). For our purposes it is simplest to express

the algorithm as the loop depicted in figure 5.1.

If the analyser requests the implicit subtree of a node after end event be built, then

we continue execution from the current event (which will be the value of end event from

87

the previous call to build annotated trace).

5.2 Limiting the depth by a predefined

constant

The simplest way to control the space-time trade-off is to vary the value of depth limit in

figure 5.1. For less memory consumption, but more reexecutions we can set depth limit

to a low value. If we have more memory available then we can set depth limit to a higher

value which would result in fewer reexecutions.

The problem with this solution is that it is impossible to give a value for depth limit

that will work sensibly in all cases.

If we make the depth limit small, and the branching factor of the program is low, then

we may end up collecting too few events on each run, resulting in lots of reexecutions of

the program.

If our debugger only implements top down search and this is the only search strategy we

are interested in ever implementing, then setting the depth limit to a low number will work

fine most of the time. This is because the program will only need to be reexecuted after a

nonzero number of questions have been asked of the user (the number of questions depends

on the value of depth limit and the user’s answers to the questions). This means the user

will normally spend most of their time answering debugger questions instead of waiting for

the program to be reexecuted. However, with search strategies such as divide-and-query

and subterm dependency tracking, which need to explore large portions of the EDT before

asking the user a question, a small depth limit can be disastrous. For example suppose

depth limit is fixed at 5 and the program generates a stick-like tree of depth 100 000. For

divide-and-query to ask about the node at depth 50 000 (which would divide the tree into

two portions of equal weight) the program must be reexecuted 10 000 times!

If, on the other hand, we use a large predefined depth limit, then if the branching

factor of the program is large, too many nodes will be collected. For example suppose

we fix depth limit at 10 000. In our example above this would mean the program would

only have to be reexecuted 5 times for divide-and-query to arrive at the middle node.

However using a depth of 10 000 on a program with a higher branching factor, like the

Mercury compiler, causes all available memory to be used up and the debugger to come to

a thrashing halt before it ever gets the chance to ask the user any questions.

Instead of limiting the depth of each tree by a predefined constant, it would be preferable

88

for depth limit to be a function of the shape of the implicit tree we wish to materialize.

Besides the heap space used by the program under normal conditions, there are two

additional memory costs when the annotated trace is being built.

1. Each node in the annotated trace consumes a fixed amount of memory, though the

amount depends on the node type.

2. Because each call and exit node in the annotated trace keeps references to the

arguments of the call or exit atom, the values of such arguments cannot be garbage

collected. This doesn’t add directly to the memory consumption, but prevents pre-

viously allocated space from being freed when it otherwise would be. The effects of

this can be extremely difficult, if not impossible, to predict. We do, however, know

that the amount of memory held in this way will increase with the number of nodes

which are added to the annotated trace.

The amount of memory held by or allocated for annotated trace nodes increases with

the number of nodes which are added to the annotated trace. Thus if we are able to

control the number of nodes added to the annotated trace during a single reexecution, we

would stand a better chance of controlling the amount of memory consumed and thus gain

more control over the space-time trade-off. The more linear the relationship between the

number of annotated trace nodes and the amount of memory consumed, the more control

we can have over the space-time trade-off. As we will see it turns out that in practice we

can achieve a satisfactory level of control of the space-time trade-off by controlling more

accurately how many nodes are added to the annotated trace with each reexecution.

5.3 Estimating the ideal depth

Given the root of an implicit tree, we need to find a value for depth limit which will cause

no more than a specified number of nodes, node limit, to be added to the annotated trace

in one run. We’ll call the maximum such depth limit the ideal depth for the given tree.

The algorithm for building a portion of the annotated trace then becomes the one depicted

in figure 5.2.

Notice how the algorithm is now parameterized by node limit, the desired number of

nodes to be generated and not by depth limit. depth limit is instead calculated using the

function get ideal depth. Notice too that we have introduced a new variable dmax, which

89

build annotated trace(call number, end event, node limit) returns trace is

trace := NULL

inside := false
dmax := 0
Rewind execution to a call before or equal to call number
depth limit := get ideal depth(end event, node limit)
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) ≤ depth limit

trace := create annotated node(e, trace)
Let depth in implicit subtree := depth(e) - depth limit
If dmax < depth in implicit subtree

dmax := depth in implicit subtree
If e is an exit, fail or excp and depth(e) = depth limit

trace := mark as implicit root(e, dmax, trace)
dmax := 0

If e is an exit, fail or excp event for call call number
inside := false

Until the event number of e is end event

Figure 5.2: Algorithm for building the annotated trace and recording the maximum depth
of each implicit subtree.

records the maximum depth of each implicit subtree. The purpose of dmax will be made

clear shortly.

We now look at some methods to efficiently estimate the ideal depth of a tree for a

particular value of node limit.

We can think of the annotated trace as a weighted tree where each call event represents

a node in the tree. Each node in this tree has a weight which is the number of events

which have the same call sequence number as the node. This includes the internal events

generated directly by the call as well as the call event and its corresponding redo and

exit event(s) and/or fail or excp event. We will call such a tree a weighted call tree.

Note that this tree does not in general correspond to the EDT. In the EDT each

node represents an exit, fail or excp event, whereas in the weighted call tree each node

represents a call event. Calls which succeed more than once will be represented by multiple

90

nodes in the EDT, but only one node in the weighted call tree.

The weighted call tree has the property that the sum of the weights of all the nodes

equals the number of annotated trace nodes represented in the tree. This property makes

it useful for modeling the approximate memory consumed by a materialized portion of the

annotated trace.

For a weighted call tree with a constant branching factor b, the same weight for each

node w, and maximum depth dmax, the number of events represented by the tree N , is

given by the following formula.

N = w

dmax−1∑

i=0

bi (5.1)

To calculate the average weight we simply divide the number of events in the tree by

the number of calls. We can easily find out the number of events and the number of calls

in the tree by looking at the last allocated event number and call sequence number at the

time of the call event and then at the time of the exit, fail or excp event at the root

of the implicit subtree.

Calculating the average branching factor requires some additional information. But

first let us define precisely what we mean by the average branching factor. We will define

the average branching factor of a tree as the branching factor of another tree with the same

maximum depth and number of nodes as the original tree, but with a constant branching

factor. Using this definition we can find the average branching factor by solving for b in

equation 5.1.

We have w (the average weight) and N (the total number of events in the implicit

tree). The missing piece of the puzzle is dmax, the maximum depth of the implicit subtree.

Now every time we build a new portion of the annotated trace, the events inside implicit

subtrees must still be executed, even though they are not added to the annotated trace.

This means we have an opportunity to collect and summarize information about implicit

subtrees whenever we build a new portion of the annotated trace. This information can be

stored at implicit root nodes in the materialized portion of the annotated trace, ready to

be accessed when the implicit subtree needs to be materialized. One piece of information

that we can gather with minimal impact on execution time is the maximum depth of each

implicit subtree, as we do in figure 5.2.

We are now able to solve for b, the average branching factor. This is quite straight

forward to do since f(b) = w
∑

dmax−1

i=0
bi − N is a strictly increasing function for positive

91

b, so numerical methods such as Newton’s method work well to find b where f(b) = 0.

Once we have b and w we can then find a value for depth limit which causes approxi-

mately node limit events to be added to the annotated trace. To do this we need to find

the root of the strictly increasing function g(d) = w
∑

d−1

i=0
bi − n. Again this is easy to do

using numerical methods. d can then be used as the return value of get ideal depth.

When the first tree is being materialized we do not yet have access to the maximum

depth of the tree, so in this single case get ideal depth returns a conservatively small

constant. This only happens once, so at worst results in one extra reexecution of the

program.

Tables 5.2 – 5.6 show the results of some experiments run using this implementation of

the get ideal depth function.

“fib” is a naive implementation of the Fibonacci function (which produces an expo-

nential number of events relative to the maximum depth). “stick” is a simple recursive

predicate which produces a stick-like tree. “smallbig” and “bigsmall” produce trees similar

in shape to the ones depicted in figure 5.3. We also test this technique with a realistic

Mercury program: the Mercury compiler itself. The compiler is invoked on a small, 51

line source file. (Once we have improved our method, we will also show an example with a

bigger source file.) Table 5.1 gives the total number of events in the search space for each

benchmark.

The results were obtained by simulating a declarative debugging session where the bug

is at a leaf node in the tree (this is the worst case since it requires the most reexecutions

of the program). The search strategy used in all cases was divide-and-query and in all

cases the search was started from the top level exit node for the main predicate. ‘No’

was answered to all questions, causing the search to end at a leaf node. For interest the

number of questions asked using divide-and-query is also given in table 5.1. In the tables

node limit is the number of nodes that we want to be collected for each reexecution. We

do not include the initial reexecution or the final reexecution in the shown measurements,

since the initial reexecution uses a small constant depth limit (since nothing is known about

the tree at this time) and the final reexecution would in general collect fewer nodes that

the other reexecutions. total created is the total actual number of annotated trace nodes

which were produced during the complete debugging session (except for the first and last

reexecutions). exec count is the number of reexecutions which were required to locate the

bug (again minus the first and last reexecutions). Dividing total created by exec count

gives the actual average number of nodes collected per reexecution, which we would like

92

Benchmark Total events D&Q questions
fib 24 232 831 30
stick 1 000 007 18
smallbig 15 076 715 29
bigsmall 18 404 873 21
Mercury compiler 18 135 308 12

Table 5.1: Total events in the search space for each benchmark.

to be as close to node limit as possible. The total CPU time (TCPU) and total wall clock

time (TWC) of the complete debugging session is also shown. Both these times are given

in seconds. Times were averaged over ten runs. Next the total resident set size (RSS) is

displayed in megabytes along with the total virtual size (VSZ) of the process (including

swap space used by the process). Both these measurements were captured at the time of

bug location which would be when they are at their maximum.

All tests were run on a 2.4 GHz Intel Pentium IV with 512MB of RAM under SuSe

Linux 8.1.

Figure 5.3: The shape of the trees produced by “smallbig” and “bigsmall”.

Judging from the results in tables 5.2 – 5.6 it seems our first attempt to approximate

the ideal depth has not been very successful.

For “stick” and “fib” the node limit and the average number of nodes gathered per

reexecution seem at least proportional. Notice the long running times for smaller values

of node limit in the “stick” example (table 5.3). This is because of the high number

of reexecutions of the program required. This is not as much of an issue for the “fib”

example since the tree produced is much shorter. Instead in the “fib” example (table

5.2) reexecutions take longer for larger values of node limit because of the overhead of

constructing the nodes. (In the “stick” example this overhead occurs for all values of

93

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 7 3 516 502 25 27 16 26
100 5 7 324 1 464 25 27 17 26
200 4 7 818 1 954 25 28 17 26
500 3 20 020 6 673 25 27 18 26

1 000 2 64 710 32 355 25 27 22 30
2 000 2 113 364 56 682 26 28 27 41
5 000 2 174 420 87 210 26 28 32 41

10 000 2 541 946 270 973 28 30 66 74
20 000 1 2 059 706 2 059 706 38 41 211 223
50 000 1 6 454 422 6 454 422 59 109 468 647

100 000 1 6 454 422 6 454 422 59 110 465 647

Table 5.2: “fib” using the average branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

1 000 258 1 003 552 3 889 509 524 236 242
2 000 131 1 000 454 7 637 273 281 228 234
5 000 55 998 440 18 153 130 137 225 234

10 000 29 993 546 34 260 84 87 211 217
20 000 16 992 704 62 044 61 64 220 226
50 000 8 999 732 124 966 48 50 227 234

100 000 4 921 266 230 316 40 43 219 226
200 000 3 999 812 333 270 39 41 227 233
500 000 1 742 844 742 844 28 39 194 200

Table 5.3: “stick” using the average branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

2 000 33 173 664 5 262 311 313 44 58
5 000 21 232 152 11 054 208 209 48 58

10 000 17 390 994 22 999 170 171 68 82
20 000 13 1 952 040 150 156 148 149 211 224
50 000 10 1 146 974 114 697 118 119 147 157

100 000 9 313 478 34 830 92 93 55 66
200 000 7 624 342 89 191 85 85 95 107
500 000 Out of Memory

1 000 000 Out of Memory

Table 5.4: “smallbig” using the average branching factor.

94

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 534 4 233 398 7 927 124 2 067 434 689
100 Out of Memory

Table 5.5: “bigsmall” using the average branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

100 37 895 982 24 215 50 52 203 228
200 35 2 584 138 73 832 66 69 400 428
500 11 4 591 288 417 389 70 168 314 671

1 000 8 6 532 290 816 536 85 469 330 888
2 000 Out of Memory

Table 5.6: The Mercury compiler using the average branching factor.

node limit because all nodes are always constructed.)

For the “fib” example the average branching factor of the tree is calculated to be 1.55.

This is too low. A value closer to 2 would give better values for depth limit when collecting

nodes near the top of the tree (i.e. the part of the tree where there are fewer leaf nodes).

We might expect the estimate to be more accurate for the “stick” example, since the

approximation tree should also be a stick of the same depth as the actual tree. This is,

however, not the case, since the “stick” example does not in fact produce a perfect stick.

This is because along with each recursive call there are also calls to some builtin predicates

such as +. (These calls are used to determine when to stop recursion.) This results in

a tree which is a good approximation to a perfect stick when the tree is very deep, but

which starts to look less like a stick as the maximum depth decreases. This is reflected in

the calculated average branching factors which are close to one for the initial reexecution,

but which increase for later reexecutions. For example with node limit set to 100 000, the

calculated average branching factor is 1.000023 for the first reexecution, but is 1.000297

for the last reexecution.

In the “smallbig” example (table 5.4) there doesn’t appear to be any correspondence

at all between node limit and the average number of nodes constructed per reexecution.

The runs with node limit set to 20 000 and 50 000 seem particularly out of place. The

individual reexecutions for these runs are shown in table 5.7 together with the reexecution

where node limit is set to 100 000. It seems the second last reexecution is responsible

for the large memory usage in both cases. Even though the value of depth limit is small

95

Re-execution # Nodes created depth limit
node limit = 20 000

2 23 914 2 390
3 19 944 1 993
4 16 104 1 609
5 12 554 1 254
6 9 414 940
7 6 744 673
8 4 614 460
9 3 014 300

10 1 854 184
11 1 094 108
12 614 60
13 402 31
14 1 851 774 16

node limit = 50 000
2 33 724 3 371
3 24 514 2 450
4 16 884 1 687
5 10 954 1 094
6 6 674 666
7 3 804 379
8 2 024 201
9 1 024 101

10 484 47
11 1 046 888 19

node limit = 100 000
2 41564 4155
3 26544 2653
4 15744 1573
5 8644 863
6 4384 437
7 2054 204
8 894 88
9 16638 36

10 197012 18

Table 5.7: “smallbig” individual re-executions using the average branching factor.

96

Re-execution # Nodes created depth limit
node limit = 50

2 4 122 802 17
3 3248 19
4 204 19
5 204 19
6 204 19
7 204 19
8 204 19
9 204 19

10 204 19
...

...
...

Table 5.8: “bigsmall” individual re-executions using the average branching factor.

for the second last reexecution in both cases, the number of nodes collected is huge. This

is because the tree suddenly gets exponentially large at its base (as shown in figure 5.3).

This means the number of nodes collected will increase dramatically even for small values

of depth limit near the bottom of the tree. The approximation therefore only has to be a

little bit too optimistic for the number of nodes constructed to explode. This is what has

happened for the runs with node limits of 20 000 and 50 000. Observe that the number

of nodes collected for reexecutions before this explosion gradually get smaller with each

reexecution. This is because the approximation trees for implicit subtrees rooted lower

down are fatter and shorter than the approximation trees for implicit subtrees rooted

higher up. So the calculated average branching factor will be higher for later reexecutions

which causes the depth limit to be lower.

The run with a node limit of 100 000 is also shown in table 5.7. Although the node

limit is more than the two previous runs, fewer nodes are constructed. This is because we

get lucky and only just touch the “big” portion of the “smallbig” tree in reexecution # 9.

Because the next reexecution then starts inside the “big” portion of the tree we are able

to make a much better guess at the ideal depth.

The “bigsmall” example runs out of memory with the node limit set to only a hundred

(table 5.5). This is because the approximation tree (as shown in figure 5.3) is way too deep

and narrow, resulting in all the nodes in the “big” part of the tree being materialized in

the first few reexecutions. This can clearly be seen in table 5.8 which shows the individual

reexecutions where node limit is set to fifty.

97

The Mercury compiler session also performs poorly using the average branching factor

heuristic (table 5.6).

The reason our heuristic performs poorly is because the approximation tree doesn’t

have the same shape as the actual tree, even though it has the same maximum depth and

number of nodes. For example in the “fib” case, there will be only a few events at the

maximum depth, whereas the approximation tree will be completely balanced, with many

events at the maximum depth. Even though “smallbig” and “bigsmall” have very different

shapes, they are approximated by the same tree (figure 5.3).

5.4 A better approximation

Instead of approximating an implicit tree by a tree with the same maximum depth, per-

haps we could use the average depth of events in the implicit tree instead. This way the

approximation tree would be shorter and fatter if more events were at the top of the tree

and taller and thinner if more events were at the bottom of the tree. The “smallbig” and

“bigsmall” examples would then be approximated by the trees in figure 5.4.

Figure 5.4: Approximating “smallbig” and “bigsmall” using the average depth of events
in the tree.

The average depth of the tree can be calculated in a manner similar to the way we

calculate the maximum depth, except that while we are in an implicit subtree we sum the

depths of all the events and then when we exit the implicit subtree we divide this by the

total number of events in the implicit subtree. The sum of the depths of all the events in

an implicit subtree can cause overflow if we use 32 bits to represent the sum. We must be

careful to avoid this problem (for example by using a 64 bit representation).

We now solve for β in

98

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 16 1 472 92 28 30 16 24
100 11 2 492 226 26 28 16 24
200 7 3 820 545 25 27 16 26
500 4 6 096 1 524 25 27 16 26

1 000 4 7 106 1 776 25 27 16 26
2 000 4 7 106 1 776 25 27 16 26
5 000 3 10 204 3 401 25 27 17 26

10 000 2 16 360 8 180 25 27 18 26
20 000 2 40 922 20 461 25 27 20 30
50 000 2 89 386 44 693 25 27 25 35

100 000 1 65 524 65 524 25 27 29 41
200 000 1 131 060 131 060 25 27 33 41
500 000 1 131 060 131 060 25 27 33 41

1 000 000 1 262 132 262 132 26 28 43 57
2 000 000 1 262 132 262 132 26 28 43 57

Table 5.9: “fib” using the biased branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

1 000 269 1 002 886 3 728 381 395 236 242
2 000 141 1 000 004 7 092 213 221 236 242
5 000 63 996 372 15 815 110 116 235 242

10 000 36 992 774 27 577 74 79 227 234
20 000 21 980 714 46 700 56 59 211 217
50 000 11 954 644 86 785 45 48 220 226

100 000 7 923 838 131 976 39 44 211 217
200 000 4 826 606 206 651 31 41 194 199
500 000 2 684 698 342 349 27 38 194 200

Table 5.10: “stick” using the biased branching factor.

N = w
dave−1∑

i=0

βi (5.2)

where dave is the average depth of the nodes in the tree. Because we are using the

average depth and not the maximum depth, β is not an average branching factor according

to our definition. Instead we will call β the biased branching factor.

As can be seen from the results in tables 5.9 – 5.13 this approach does perform better,

99

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

2 000 35 112 702 3 220 322 324 42 49
5 000 24 111 006 4 625 222 223 42 49

10 000 18 112 522 6 251 171 172 42 49
20 000 15 173 882 11 592 147 148 50 58
50 000 12 195 772 16 314 119 119 50 58

100 000 7 2 159 786 308 540 96 97 244 257
200 000 7 232 038 33 148 72 72 50 66
500 000 Out of Memory

1 000 000 7 116 452 16 636 81 81 55 66

Table 5.11: “smallbig” using the biased branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 551 706 318 1 281 79 96 133 141
100 279 498 044 1 785 51 59 100 107
200 145 230 714 1 591 35 39 58 66
500 65 283 128 4 355 51 54 75 83

1 000 37 703 712 19 019 47 49 141 149
2 000 Out of Memory

Table 5.12: “bigsmall” using the biased branching factor.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

100 54 601 527 11 139 47 50 155 186
200 36 1 061 339 29 481 49 51 217 244
500 18 2 441 239 135 624 63 64 387 411

1 000 13 3 264 682 251 129 65 72 307 520
2 000 12 3 795 007 316 250 64 124 375 562
5 000 8 4 340 017 542 502 66 131 174 654

10 000 6 4 757 083 792 847 68 158 400 704
20 000 6 5 196 205 866 034 74 353 423 754
50 000 5 5 761 007 1 152 201 79 459 298 787

100 000 4 6 223 895 1 555 973 82 396 425 871
200 000 Out of Memory

Table 5.13: The Mercury compiler using the biased branching factor.

100

Re-execution # Nodes created depth limit
node limit = 100 000

2 36 644 3 663
3 22 994 2 298
4 23 654 2 364
5 9 034 902
6 5 474 546
7 2 254 224
8 2 059 732 19

Table 5.14: “smallbig” individual re-executions using the biased branching factor.

although the estimates are still far from perfect.

“smallbig” (table 5.11) still suffers from the same problem that it did when using the

average branching factor, except the problem now occurs when node limit is set to 100 000.

Table 5.14 shows the individual reexecutions when the node limit is 100 000.

The situation is slightly improved for the Mercury compiler debugging session using the

biased branching factor (table 5.13), since we now only run out of memory when node limit

is set to 200 000 (although we are still generating way too many nodes compared to the

node limit).

Clearly approximating an implicit subtree as a tree with a constant branching factor

is not a general solution, since realistic programs do not behave this way. Typically real

programs call all sorts of different predicates, some of which are simple recursive predicates

which produce stick-like trees and some of which have long conjunctions in their bodies

which produce wide trees with large branching factors. Non-deterministic code can also

lead to a high branching factor if there is lots of backtracking.

5.5 Calculating the ideal depth

Instead of playing guessing games, ideally we’d like to calculate an accurate upper bound

for depth limit which would result in no more than node limit nodes being added to the

annotated trace.

Any method of calculating the ideal depth limit will need to take into account the shape

of the tree. One way to do this is to build a histogram of the number of events at each

depth in the tree. The histogram could then be consulted to work out at what depth the

total number of events exceeds node limit.

101

Now an obvious problem with such a method is that it requires an array whose length

is as big as the deepest event in the call tree. If the program has deep recursion, then

we might consume more memory building the histogram than actually generating the

annotated trace, which instead of solving the space problem makes it worse.

Fortunately a simple observation saves us. In actual fact we don’t need the number

of events at every depth. If we wish to build an annotated trace containing node limit

events, then it suffices to record the number of events at each depth down to a depth of

⌊node limit/2⌋. This is because the minimum number of events we can have a each depth

is two (a call event and its corresponding exit, fail or excp event). We can reuse the

same array to calculate the ideal depth for all the implicit subtrees encountered during

a particular run. Reserving ⌊node limit/2⌋ words of memory for this purpose is not a

problem, since we have already committed to adding at most node limit annotated trace

nodes anyway.

The version of build annotated trace adapted to calculate the ideal depth for each

implicit subtree is depicted in figure 5.5.

Experimental results for our toy examples are given in tables 5.15, 5.16, 5.17 and 5.18.

The results for the Mercury compiler are given in table 5.19. We now also test the Mercury

compiler on a bigger source file (table 5.20). The module compiled performs type checking

in the Mercury compiler and is one of the biggest modules in the Mercury compiler. It

consists of 6 418 lines of source code (including blank lines and comments). The total

number of events generated is 204 640 323. Using divide-and-query to find a (pseudo) bug

in a leaf node required 22 questions.

The average actual nodes gathered per reexecution in most cases is quite far below

node limit. This is because, with each reexecution, we build the tree to the maximum

depth which will produce at most node limit nodes. In most cases less than node limit

nodes are produced.

The results show that the extra calculation required to compute the ideal depth limit

(instead of estimating it) is well worth it. Table 5.21 nicely demonstrates the flexibility of

this approach. Here two runs of the “bigsmall” example are shown. Notice how very small

values for depth limit are calculated for the top of the tree where the branching factor is

high, while large values for depth limit are calculated for the stick-like section of the tree.

When the Mercury compiler is invoked on a larger source file the total time to find the

bug in a leaf node is about ten minutes when node limit is set to 500 000 (table 5.20).

This is due to the high number of events (over 200 million). Ten minutes is not too bad

102

build annotated trace(call number, end event, node limit) returns trace is

trace := NULL

inside := false
Initialise histogram to size ⌊node limit/2⌋
Rewind execution to a call before or equal to call number
depth limit := get ideal depth(end event, node limit)
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) ≤ depth limit

trace := create annotated node(e, trace)
Let depth in implicit subtree := depth(e) - depth limit
If 0 < depth in implicit subtree ≤ ⌊node limit/2⌋

Add 1 to histogram[depth in implicit subtree]
If e is an exit, fail or excp and depth(e) = depth limit

ideal depth := calculate ideal depth(histogram, node limit)
trace := mark as implicit root(e, ideal depth, trace)
Reset histogram

If e is an exit, fail or excp event for call call number
inside := false

Until the event number of e is end event

Figure 5.5: Algorithm for building the annotated trace and calculating the ideal depth of
each implicit subtree.

considering there are seven reexecutions. In a realistic debugging session the user would

likely spend a lot more time answering debugger questions. For higher values of node limit

memory space starts to become an issue.

It now becomes feasible to use a parameter independent of the program being debugged

to control the space-time trade-off. A value for node limit in the range of 50 000 to 200 000

allows us to feasibly debug the simple “stick” example as well as the Mercury compiler.

5.6 Related work

For non-strict functional languages such as Haskell there is the additional technical problem

of dealing with non-strict evaluation when building the EDT. Non-strict evaluation is tricky,

103

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 26 520 20 39 41 16 24
100 13 676 52 32 34 16 24
200 8 928 116 29 31 16 24
500 5 2 486 497 27 29 16 24

1 000 4 2 000 500 27 29 16 24
2 000 4 4 746 1 186 26 29 16 27
5 000 3 11 828 3 942 26 28 17 27

10 000 2 16 360 8 180 26 28 18 27
20 000 2 32 730 16 365 26 28 19 30
50 000 2 80 596 40 298 26 28 24 35

100 000 1 65 524 65 524 27 29 27 41
200 000 1 131 060 131 060 27 29 31 41
500 000 1 262 132 262 132 28 30 42 58

1 000 000 1 524 262 524 262 29 32 66 74
2 000 000 1 1 046 852 1 046 852 34 36 117 132

Table 5.15: “fib” using the calculated ideal depth.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

1 000 1 010 1 003 940 994 641 685 228 234
2 000 502 1 000 988 1 994 332 354 203 209
5 000 200 998 800 4 994 151 161 203 209

10 000 100 999 400 9 994 94 101 195 201
20 000 50 999 700 19 994 63 67 195 201
50 000 20 999 880 49 994 47 49 203 209

100 000 10 999 940 99 994 40 42 203 209
200 000 5 999 970 199 994 37 38 203 208
500 000 2 999 988 499 994 35 37 244 250

Table 5.16: “stick” using the calculated ideal depth.

because the order of evaluation is usually very different to the order nodes should appear

in the EDT. Much research has and is being done to overcome this problem [34–36, 43].

Mercury doesn’t have this problem, because the sequence of calls corresponds closely with

their position in the EDT.

Nilsson and Fritzson [35, 36] also propose constructing the program trace piece by piece.

They introduce the concept of the query distance to a node. This is the number of questions

required to get to the node using a top-down, left-to-right search. Figure 5.6 (taken from

104

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

1 000 105 102 400 975 949 953 42 50
2 000 54 104 942 1 943 486 488 42 50
5 000 23 111 904 4 865 204 205 42 50

10 000 12 116 396 9 699 112 113 42 50
20 000 7 132 746 18 963 67 68 42 50
50 000 4 180 600 45 150 40 41 45 58

100 000 2 165 524 82 762 31 32 50 58
200 000 1 165 520 165 520 22 22 50 58
500 000 1 362 128 362 128 23 24 77 91

1 000 000 1 624 258 624 258 26 26 117 125
2 000 000 1 1 146 848 1 146 848 30 30 166 174

Table 5.17: “smallbig” using the calculated ideal depth.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

50 2 526 110 596 43 156 226 42 50
100 1 124 105 230 93 81 112 42 50
200 534 103 092 193 50 65 42 50
500 210 102 436 487 33 39 42 50

1 000 105 102 646 977 28 31 42 50
2 000 54 105 112 1 946 25 27 42 50
5 000 23 113 772 4 946 23 24 42 50

10 000 12 118 350 9 862 23 24 42 50
20 000 7 136 982 19 568 22 23 45 58
50 000 4 181 874 45 468 23 23 58 66

100 000 2 173 708 86 854 22 23 50 58
200 000 1 147 442 147 442 22 24 44 58
500 000 1 294 928 294 928 23 25 60 74

1 000 000 1 590 692 590 692 25 27 92 107
2 000 000 1 1 182 706 1 182 706 29 32 161 174

Table 5.18: “bigsmall” using the calculated ideal depth.

[35]) illustrates the query distance of some nodes in an EDT.

Nilsson optimistically adds nodes to the EDT and then uses the query distance to

decide which nodes should be discarded if memory usage becomes too high. Nodes with

higher query distances are the first to be discarded.

This, as Nilsson demonstrates in [35] works well for top-down search, since most of the

105

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

100 206 14 422 70 156 164 110 136
200 151 21 226 140 121 127 102 128
500 111 32 058 288 97 101 102 128

1 000 83 67 193 809 80 83 102 128
2 000 62 102 199 1 648 77 80 105 136
5 000 42 190 746 4 541 73 75 110 136

10 000 30 279 637 9 321 71 72 117 145
20 000 19 366 148 19 270 60 61 128 153
50 000 10 490 280 49 028 57 58 138 162

100 000 6 588 080 98 013 57 58 159 187
200 000 4 750 617 187 654 53 54 191 220
500 000 2 983 303 491 651 47 48 211 237

1 000 000 1 997 904 997 904 52 54 251 279
2 000 000 1 1 939 334 1 939 334 62 63 358 387

Table 5.19: The Mercury compiler using the calculated ideal depth.

node limit exec count total created total created

exec count
TCPU TWC RSS VSZ

1 000 50 39 272 785 1 238 1 242 202 228
5 000 31 105 326 3 397 1 010 1 015 206 236

10 000 24 202 919 8 454 942 945 217 244
50 000 15 651 764 43 450 734 736 248 278

100 000 12 1 079 520 89 960 688 690 315 344
500 000 7 3 259 056 465 579 509 594 467 561

1 000 000 6 5 872 026 978 671 500 1 480 463 877
5 000 000 Out of Memory

Table 5.20: The Mercury compiler with a bigger source file.

time the next question will be in a materialized portion of the EDT. However for other

search strategies, such as divide-and-query or subterm dependency tracking, the query

distance as described above ceases to become a useful heuristic to decide which nodes to

throw away.

Modifying the notion of the query distance to work for different search strategies is

not a viable option either. It is unclear how this modified query distance heuristic could

be measured efficiently for the divide-and-query search strategy and it is impossible to

measure for the subterm dependency tracking strategy, since it is impossible to know

which subterms a user will wish to track beforehand. Also the user should be able to

106

Re-execution # Nodes created depth limit
node limit = 20 000

2 18 418 10
3 18 590 10
4 19 998 1 934
5 19 994 1 999
6 19 994 1 999
7 19 994 1 999
8 19 994 1 999

node limit = 50 000
2 36 850 11
3 45 034 12
4 49 996 4 988
5 49 994 4 999

Table 5.21: “bigsmall” individual re-executions using the calculated ideal depth.

Figure 5.6: Query distance of nodes from the root node

switch search strategies mid-session. Nilsson’s approach cannot be adapted to handle this

situation without a substantial redesign.

Also, as Nilsson points out in [35] there is a penalty to be paid for first creating a node

in the EDT and then disposing of that node later when resources become tight (mostly

due to the extra work garbage collection must do). This is tolerable if a new portion of

the EDT only needs to be built after having asked the user a few questions, however if

several EDT portions need to be materialized between successive questions (as can be the

case with divide-and-query and subterm dependency tracking) then this penalty becomes

unacceptable.

107

Using our method we are able to know ahead of time how much of the EDT can be

viably generated in a single reexecution, so no nodes are created only to be destroyed later.

Certainly for some long running programs it will become necessary to dispose of nodes

which have been eliminated from the bug search. We have not (yet) implemented this

feature in the Mercury declarative debugger, though conceivably that would not be hard

to do. Nodes should only be deleted as a last resort, though, since even nodes which have

been eliminated from the suspect area may be revisited if the user decides to revise a failed

bug search, because they answered some questions incorrectly the first time round.

Naish and Barbour [34] also propose piecemeal generation of the trace using a predefined

constant depth limit. The limitations of this approach have already been pointed out in

section 5.2.

Another idea which has been around for a while is to not collect events for trusted

predicates (both Sparud and Nilsson do this in their debuggers [35, 49]). We implement

trusting in the Mercury declarative debugger too (see section 3.2), however, we do not

throw trusted nodes away, for the simple reason that if we omitted trusted predicates from

the annotated trace then we could not track subterms through them (see section 4.3). It

is often the case that we wish to track a subterm through calls to library predicates, which

are normally trusted. For example if we wish to track the origin of a term after it has been

inserted and then extracted from a map, we cannot do so if the calls to map.insert and

map.search (and all their descendant calls) have been omitted from the trace.

Another reason we keep trusted calls is that the user’s trust in a predicate may be

misplaced (see section 6.1 for a real example of this). In this case the user may wish to

untrust a predicate. We do not then want to have to reexecute the program to collect the

previously trusted nodes.

108

Chapter 6

Case studies

In this chapter we will examine four debugging sessions where real bugs were found in

non-trivial programs using the declarative debugger.

Two of the bugs were in the Mercury compiler itself. This is a Mercury program of

over 300 000 lines of code. The two remaining bugs occurred in the declarative debugger,

which is also a Mercury program of approximately 10 000 lines of code.

6.1 Case study 1: A bug in the Mercury

compiler

The first bug is one we found in the Mercury compiler. Its symptom is a thrown exception

when a test program is compiled with the --optimize-saved-vars-const option.

We won’t go into the meaning of the --optimize-saved-vars-const option here, save

to say that it is an optimization which is inapplicable to the test case in question and that

the compiler aborts when compiling the test case with this option.

Since the optimization shouldn’t affect the output of the compiler in this case, our first

course of action is to observe the call to the predicate which implements this optimization

in the Mercury compiler. This predicate is named saved vars const. We fire up the

procedural debugger, turn on I/O tabling (since we may have to retry across I/O actions

— see section 3.5), put a break-point on the predicate saved vars const and continue

until we hit the first call to saved vars const. We then use the finish command to

continue to the corresponding exit event.

1: 1 1 CALL pred top level.main/2-0 (det) top level.m:48

109

mdb> table io start

I/O tabling started.

mdb> break saved vars proc

0: + stop interface pred ll backend.saved vars.saved vars proc/8-0 (det)

mdb> continue

2567051: 745876 25 CALL pred ll backend.saved vars.saved vars proc/8-0 (det)

saved vars.m:63 (mercury compile.m:2694)

mdb> finish

2570947: 745876 25 EXIT pred ll backend.saved vars.saved vars proc/8-0 (det)

saved vars.m:63 (mercury compile.m:2694)

The three numbers at each event indicate the event number, call sequence number and

call depth respectively. The first point to note here is the relative ease with which we can

get to the interesting part of the program using the procedural debugger. Concepts such

as break-points are not as intuitively integrated into the declarative debugger and nor do

they need to be, because the procedural debugger does an excellent job of navigating the

program execution. This reenforces the idea that the procedural and declarative debuggers

play a complementary role.

The head of the saved vars proc predicate looks like the following.

saved_vars_proc(PredId, ProcId, ProcInfo0, ProcInfo, !ModuleInfo, !IO) :-

The arguments of interest here are ProcInfo0 and ProcInfo which are representations

of a procedure body, annotated with extra information, such as determinism information,

before and after the optimization is applied. ProcInfo0 and ProcInfo should be the

same since the optimization shouldn’t affect any of the procedures in the input program.

Now we cannot easily compare the values of ProcInfo0 and ProcInfo by eye, since they

each require a few hundred lines to display. To find out if they are equal we use the

procedural debugger’s save to file command to first save their textual representations

to two separate files and then perform a diff operation on the two files. 1 This reveals

a difference between the information about one of the goals in ProcInfo0 and ProcInfo.

Specifically the difference is in a structure which describes the state of instantiation of the

variables in the goal. For ProcInfo0 it is:

...

1We have just added a feature to the debugger which allows a diff operation to be done between two
values recorded at any point in the execution from within the debugger. This tools, however wasn’t
available at the time we were looking for the bug in question.

110

goal info(det,

reachable(

map([

2 ->

bound(unique,

[functor(

cons(qualified(unqualified("unused args test2"), "foo"), 1),

[bound(unique, [functor(int const(42), [])])])])])),
...

while in ProcInfo the value of the structure is:

...

goal info(det,

reachable(

map([

2 ->

bound(unique,

[functor(

cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])])])),
...

The difference is in the last line which gives the instantedness of the argument of the

functor "foo" which variable number 2 is bound to. In ProcInfo0 it is bound to 42, while

in ProcInfo it is free. This is erroneous behaviour, since the instantedness of variable 2

should remain unchanged. We start up the declarative debugger which asks us about the

saved vars proc atom we have just been exploring.

mdb> dd

saved vars proc(0, 0,

proc info(context("unused args test2.m", 4),

varset(var supply(4), map(

[1 -> "HeadVar 1", 2 -> "Y", 4 -> "Z"]), map([])),

map([

2 ->

functor(atom("."),

[functor(atom("unused args test2"), [], context("", 0)),
...

1875 further lines, representing the (partial!) values of
all the arguments of saved vars proc.

111

...

Valid?

The question takes up many screen pages, because we have set the print depth to

quite a high value. This illustrates a major problem with answering declarative debugging

questions, namely that they can simply be too big to even read through in a reasonable

amount of time! Luckily in this case we were able to determine an answer to the question

by using external tools (namely the Unix diff command).

6.1.1 Using subterm dependency tracking

Since we know that the value of the fourth argument of the call to ProcInfo is incorrect,

we navigate to the incorrect variable-to-state-of-instantiation map and mark it, which

produces the following result.

browser> browse

browser> cd 4/12/2/2

browser> print

reachable(

map([

2 ->

bound(unique,

[functor(

cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])])]))

browser> mark

instmap delta restrict(

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])]),

4 -> bound(unique, [functor(int const(42), [])])])),

[2],

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])])])))

Valid?

112

It should be noted that the process of navigating to the incorrect subterm was somewhat

more involved than the simple ‘browser> cd 4/12/2/2 ’ shown here. We had to navigate

to the right term by checking at each stage where we were (much like a Unix user would

navigate an unfamiliar file system). The generic graphical term browser also helped here

(in fact the screen shot in figure 3.3 is taken from this debugging session). We omit these

details here for simplicity.

Since the entire variable-to-instantiation map is incorrect the user marked the

reachable functor enclosing it. We will investigate the effect of marking subterms nested

inside the reachable functor later on in this section.

The next question is considerably simpler than the previous one. Instead of over 1800

lines we are now presented with only 13!

instmap delta restrict is supposed to eliminate variables from its first argument

which are not in the list in its second argument and return the result in its third argument.

It appears to be doing its job correctly: eliminating variable number 4, which doesn’t

appear in the list in the second argument (the second argument contains only the variable

number 2). However the first argument of instmap delta restrict is wrong. It still says

the argument of functor “foo” is free when it should be bound to 42. Marking the first

argument leads to the following.

Valid? browse 1

browser> mark

instmap delta apply instmap delta(

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])])])),

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[bound(unique, [functor(int const(42), [])])])]),

4 -> bound(unique, [functor(int const(42), [])])])),

large overlay,

reachable(

map([

2 -> bound(unique,

113

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])]),

4 -> bound(unique, [functor(int const(42), [])])])))

Valid? info

Context of current question : instmap.m:588 (mode util.m:1075)

Search mode : binary search on path

Number of suspect events : 3,865

The current question was chosen because the marked subterm was bound by

the unification inside the predicate

hlds.instmap.instmap delta apply instmap delta/4 (instmap.m:619). The

path to the subterm in the atom is 4.

The ‘info’ command gives information about the state of the search. If a subterm was

marked it also gives the location of the unification that bound the subterm.

instmap delta apply instmap delta is supposed to produce a union of the variable

maps in its first and second arguments and return the result in its fourth argument. If a

variable appears in both arguments then the second argument should take priority. This is

not happening, since variable number 2 appears in both the first and second arguments, but

in the fourth argument the instiantedness from argument one is used. The third argument

gives some operational information about which algorithm should be used to perform the

union. Clearly the answer to the question must be “no”. Giving this answer results in the

following diagnosis from the debugger.

Found incorrect contour:

instmap delta apply instmap delta(

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])])])),

reachable(

map([

2 -> bound(unique,

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[bound(unique, [functor(int const(42), [])])])]),

4 -> bound(unique, [functor(int const(42), [])])])),

large overlay,

reachable(

map([

2 -> bound(unique,

114

[functor(cons(qualified(unqualified("unused args test2"), "foo"), 1),

[free])]),

4 -> bound(unique, [functor(int const(42), [])])])))

Is this a bug?

The reason a bug is diagnosed is because all the descendants of the call to

instmap delta apply instmap delta are in the Mercury standard library and therefore

trusted. Examining the source code, there is only one child, which is a call to the li-

brary predicate overlay large map. Examining the code for overlay large map reveals

a very obvious copy-and-paste bug in its definition. Fixing this then causes the test case

to compile without any problems.

In this case our trust in the Mercury standard library was misplaced, since one

of its (recently changed) predicates turned out to be buggy. However this did not

turn out to be a problem for us, since the bug was a direct child of the call to

instmap delta apply instmap delta.

What would have happened if the user had marked a subterm inside reachable, in-

stead of reachable itself? If the user had marked the map one level down, the sequence of

question would have been exactly the same. However, if the user had marked the functor

or free functors, then the next question would have been about a direct child of the call to

saved vars proc. The reason for this is that the subterm dependency tracking algorithm

traces the subterm back to an input to saved vars proc (specifically the ProcInfo0 ar-

gument). Because this node is erroneous, tracking stops, and the debugger asks about the

last node the subterm was tracked through.

In this session the call to saved vars proc is erroneous, however in other cases the

node where the subterm is marked may not be erroneous, even if the subterm is output.

The user may wish, in these cases, to see the origin of the subterm, regardless of whether

the origin lies outside the subtree rooted at the node where the subterm was marked. The

best solution here might be to not assume the node where the subterm was marked is

erroneous or inadmissible, and to allow the user to manually browse the dependency chain.

The user should be able sort and filter the nodes in the dependency chain based on

different criteria. For example the user may wish to see only calls to certain predicates

or to all predicates in a certain module, through which the marked subterm was passed.

It would also be useful to sort the dependency chain by how deep the marked subterm

is nested in its argument at each node. This way the user can examine nodes where the

subterm is near the top of the argument it appears in first. Applying this ordering to the

115

current example, the node for instmap delta apply instmap delta would be one of the

first nodes viewed by the user, since the subterm is near the top of its argument in this

node. The node outside the call to saved vars proc where the subterm is bound, would

also be one of the first nodes viewed by the user. Since the questions about these nodes

would be small, the user would easily be able to spot the erroneous node. Implementing

these enhancements is future work.

The original session illustrates how subterm dependency tracking can reduce the number

of questions. The resulting questions also tend to be simpler to answer.

It is worth noting that the user found this bug without having any familiarity with the

code. He was able to answer the questions based only on their names, comments in the

code and the fact that he knew saved vars proc should not have modified its arguments.

In the real world it is very often the case that software systems must be maintained and

debugged by programmers who did not originally write the software. Any debugging tool

capable of skipping parts of the execution irrelevant to the cause of a bug is therefore very

useful.

6.1.2 Using divide-and-query

As a comparison, let us now recreate the debugging session using divide-and-query, this

time without making use of the subterm dependency tracking feature.

We issue the command ‘dd -s divide and query’ to start the declarative debugger in

divide-and-query mode. The first question asked is the same as before, since the debugger

always asks about the node where the dd command is first issued, regardless of the search

strategy. This time, instead of marking the incorrect subterm we simply answer ‘no’ to the

question.

This results in a question about the predicate implicitly quantify conj 2. The

question requires 184 lines to display in total. This is at least one order of magnitude

smaller than the previous question, but is also one order of magnitude bigger than the

question we got from marking the incorrect subterm. To someone unfamiliar with this

code (as the user was) the question is almost impossible to answer — especially given the

fact that this particular predicate has no informative comments in the source code, being

only a helper predicate of another algorithm.

One solution is to skip the question and hope an easier one comes along, but for the

purposes of comparison let us suppose that the user knows the answer to the question (we

do know the answer to the question, since we know where the bug is, from the previous

116

session).

It turns out that the answer to the question is ‘yes’, because the atom is valid. Pro-

gressing with the session in this manner, results in five further questions before the same

bug is found (making seven questions in total). Each of the questions, except for the last

one, required over a hundred lines to display.

Although finding a bug in a search space of 3 896 events with seven questions is not

too bad, subterm dependency tracking is the clear winner in this case since it found the

bug in fewer, simpler questions.

6.2 Case study 2: A bug in the termination

analyser

This was a bug which was found in one of the termination analysers in the Mercury compiler

(there are two).

Again the symptom is a thrown exception when the termination properties of a certain

predicate are being checked by the compiler.

In this case there was no prior suspicion of any particular predicate in the compiler,

so we couldn’t simply put a break-point on a procedure to see if it was behaving badly.

However, the procedural debugger has a feature which allows the program to be run until

an exception is thrown. So this was the logical first course of action.

1: 1 1 CALL pred top level.main/2-0 (det) top level.m:48

mdb> table io start

I/O tabling started.

mdb> exception

3702795: 1159300 39 EXCP pred exception.throw impl/1-0 (erroneous)

exception.m:700 (exception.m:361)

throw impl is a builtin predicate in the ‘exception’ standard library module which is

used to implement the throw predicate (exceptions in Mercury are discussed in more detail

in section 2.3.4). This means that throw impl is trusted by default. There is no problem,

however, with invoking the declarative debugger on a trusted predicate. If this is done,

it will simply search for the first descendant of the call which is not trusted. If there are

no untrusted descendants it will look in the subtrees rooted at ancestor nodes for the first

untrusted call it finds and ask about that. In this case throw impl has no descendants, so

117

the search looks in its ancestors. The following is what is output when the user issues a

‘dd’ command at the excp event for throw impl.

mdb> dd

Call entailed(varset(var supply(19), empty, empty),

[eq([], r/2)], lte([], r(1, 1)))

Throws "entailed/3: inconsistent constraint set."

Expected?

The declarative debugger has searched up the EDT to find the first excp node for

an untrusted predicate, which turned out to be for a call to entailed. This is useful

behaviour since it represents the call where the exception was thrown at the user’s level.

Because all the internal predicates of throw as well as throw itself are trusted by default,

the declarative debugger does not bother asking the user about their correctness.

The user then answers ‘yes’ to the question, since the constraint set passed to entailed

is indeed inconsistent. The user should have answered ‘inadmissible’, since entailed

should never have been called with the given constraint set. However, this doesn’t make

much difference here, since in the current implementation of the debugger, ‘yes’ answers

have the same pruning effects as ‘inadmissible’ answers.

Note that the question was quite small, since the search is essentially started at a leaf

node of the EDT. This suggests that this type of bottom up search can be useful when

dealing with code which throws exceptions, since one can start at the throw (or in this

case throw impl) node and work up to find the cause of the thrown exception.

The search up the tree continues with the user answering ‘yes’ to the next three ques-

tions. The questions start to get bigger further up the tree. Eventually the user is unsure

how to answer the debugger’s question (because the question is now quite complicated), so

the user responds with ‘skip’ which tells the declarative debugger to ask another question

(see section 3.3). The next question is also too complicated, so the user skips it too.

The search continues in this way with the user skipping questions which seem too

complicated and answering only questions they feel confident about. This results in a total

of five skipped questions, five ‘no’ answers, twelve ‘yes’ answers and three ‘inadmissible’

answers, before finding a buggy node.

Although this seems like a fair number of questions, each question took no more than

a few minutes to answer, since questions requiring more time were simply skipped.

This example highlights the importance of allowing the user to answer ‘don’t know’ to

118

questions and shows that the debugger can still locate the bug even if not all the questions

are answered. In a sense the ‘skip’ answer gives the user some basic control over the bug

search, since they can redirect the debugger simply by skipping nodes.

The found buggy node turned out not to be the whole bug, because the actual bug

was distributed over more than one predicate. The found node did however highlight an

inconsistency between the user’s intended interpretation and the model of the program

which quickly lead the user to the real bug.

The total session took approximately one hour.

6.3 Case study 3: Debugging the debugger

Earlier versions of the declarative debugger had a defect where, if the declarative debugger

was started at a trusted node, it would abort. The problem was being caused by two

separate bugs. We successfully used our implementation of divide-and-query to find both

bugs (we can use the declarative debugger on itself as long as we don’t use a feature that

triggers the bug we are trying to find).

The search space for the first bug consisted of 893 events. The debugger asked eleven

questions before finding the bug. The search space for the second bug consisted of 166

events and the debugger asked eight questions before finding the bug. The questions were

all relatively simple to answer, because they never grew bigger than a few dozen lines.

We can see here the logarithmic relationship between the number of events in the search

space and the number of questions it took to find the bug.

As a comparison the sessions were reproduced post-mortem, using only the basic top-

down search, with surprising results. Using top-down search, the first bug was found

in twelve questions (as opposed to eleven for divide-and-query), however the top-down

questions were on average even shorter than the divide-and-query questions. This was

due to the fact that the top-down search asked questions about leaf nodes, which divide-

and-query wouldn’t have asked about. The second bug was found in five questions using

top-down search (as opposed to eight for divide-and-query). The reason top-down search

performed so well here is because of the relatively shallow EDT involved. Had the EDT

been thinner and deeper, and the bug somewhere near the bottom of the EDT, then divide-

and-query would have found the bug in pretty much the same number of questions, but

top-down search would have asked many more questions to locate the bug.

On the other hand, the questions asked with divide-and-query tended to come from

119

different, often unrelated, parts of the program. This is not too much of a problem if the

user is familiar with the code, but it can make the questions almost impossible to answer if

they are not (as we found in case study 1). Using a search strategy like top-down search, or

subterm dependency tracking for unknown code is easier to follow, since the dependencies

between the nodes are more obvious. For divide-and-query the sequence of questions do

not usually follow the flow of execution and so do not coincide with the user’s mental model

of the program. This can make the questions more difficult to answer, since the user is

required to constantly switch mental contexts.

Divide-and-query however remains an essential tool, because of its ability to put an

upper bound on the number of questions when the search space is large, even when nothing

is known a priori about the location of the bug.

Because we allow the user to switch search strategies between top down and divide-

and-query on the fly, the user is free to make use of either depending on the situation.

120

Chapter 7

Future work

The case studies from the previous chapter, and other experiences we have had, highlight

many areas for possible future work. In this chapter we explore some of these problems

and offer possible solutions.

7.1 Search strategy improvements

At present we don’t use all the information available in the computed dependency chain.

Although the current behaviour of zooming in on the binding node has proved very useful

in practice, there is more that could be done when the binding node turns out not to be

erroneous.

If the user asserts that the binding node is inadmissible by marking one of its inputs

then the obvious and useful behaviour is to track the origin of the marked input and ask

about its binding node.

If the binding node is not erroneous then our current method of performing a binary

search on the path between the binding node and the last erroneous node has not proved

particularly useful in practice. Automatically adopting this search strategy when the user

asserts that the binding node is correct can be very confusing, especially when the user

is unfamiliar with the code they are trying to debug. This is because the subterm may

be buried inside a much larger structure higher up the dependency chain. No doubt

highlighting the position of the marked subterm in the larger structure would be beneficial

here.

Instead of doing a binary search on the dependency chain we suspect a better heuristic

would be to first ask about nodes on the dependency chain where the the subterm in near

121

the top of the argument it appears in. In such nodes the subterm is more easily accessible

by the code in the body of the predicate the node refers to, which would seem to indicate

that the code is more likely to be buggy, since it would require a smaller modification

to allow it to access the subterm directly. Questions in the dependency chain where the

subterm is near the top of its argument would also generally be smaller and easier for the

user to answer.

Another alternative would be to allow the user to manually browse the dependency

chain. This would give the user a better idea of the process that lead to the erroneous

atom and would allow them to make a better decision about which nodes in the EDT to

explore next.

Currently when the user marks a subterm in a node they also assert that the node is

erroneous or inadmissible (depending on whether the subterm is output or input). While

often this is useful behaviour, since it reduces the search space, it can on occasion be

unhelpful. For example, consider the case where a question is asked about an atom which

contains a subterm whose value the user is suspicious of, but the user is not sure that the

atom is erroneous or inadmissible. The user might in this case not wish to assert anything

about that atom, but may wish to find out where the suspicious subterm came from. Thus

a better approach might be to view a marked subterm as merely a hint to the debugger

where it should ask the next question, instead of an assertion that the node is erroneous

or inadmissible. Even better, allow the user to decide whether marking a subterm in an

atom makes an assertion about the correctness of the atom or not.

7.2 Improving resource consumption

The main problem with our approach to building the annotated trace given in chapter 5,

and indeed with all the related approaches covered in section 5.6, is the memory leak

introduced by recording references to the values of the arguments of all call and exit

nodes we collect. This can become a problem with programs which pass around large,

frequently updated, data structures.

We observe that the actual values of the arguments are only needed when the question

is to be asked of the oracle. None of the search strategies we have implemented for the

Mercury declarative debugger so far care about the argument values of the atoms in the

tree (although conceivably this situation could change in the future). Thus for search

strategies which examine large portions of the EDT before asking a question, most of

122

the values referenced by nodes in the EDT will remain unused. Only a small minority

are required. One possible solution to the memory leak issue is therefore to simply not

record any references to any values in the program. When a question needs to be asked

about a node, execution can be rewound to before the call corresponding to the node and

the call reexecuted to compute its argument values. This reexecution would be relatively

quick since no extra work, such as collecting nodes, or computing a histogram, would need

to be done (the EDT is already constructed, it is only the argument values which are

missing). A variation of this approach would be to store argument values at some points

in the EDT, much like Plaisted [42] does. If a particular argument value is needed and

not stored then we can rewind to the nearest ancestor call whose argument values we do

know and reexecute from there. On average we would then rewind to a point closer to the

call whose argument values we need to calculate which would improve performance. We

could guarantee an upper bound on how far we would have to rewind the computation by

adjusting the intervals we remember argument values at.

If the garbage collector could be queried about the sizes of values reachable only by

nodes in the EDT, which didn’t contain subvalues referenced by variables in the program,

then we could selectively delete those nodes in the EDT which are holding the most mem-

ory. However, this would require substantial work to implement since we currently use a

conservative collector [3] which cannot provide such information.

If we used a garbage collector which supported weak references (i.e. references which the

garbage collector could recycle if needed), then we could use those to reference argument

values in the program from the EDT. The garbage collector could recycle the argument

values if memory became tight. This would require a check to see if a referenced argument

value had been recycled by the garbage collector, before being accessed.

Another area where our approach currently falls short is with code which relies heavily

on backtracking, specifically clauses such as:

queen(Data, Out) :-

qperm(Data, Out),

safe(Out).

where a generator predicate (qperm/2) generates possible solutions and a test predicate

(safe/1) checks if each solution is valid and fails if it isn’t, causing the generator to generate

more solutions. All call, redo, exit and fail events generated by qperm/2 and safe/1

will have the same depth. With our current algorithm either all these events will be added

to the annotated trace during a particular reexecution, or none of them will be added.

123

This can be a problem if there are a large number of these events.

One solution is to permit nodes in the annotated trace whose children are not all mate-

rialized. So in addition to marking a node as an implicit root, which indicates that none of

its children are present, we might allow nodes to be marked as the roots of partially mate-

rialized subtrees too. Before the root of a partially materialized subtree can be considered

a bug, all its children would first need to be materialized.

Besides a few artificially constructed examples, we have not found examples of heavy

backtracking in practice, simply because most real programs written in Mercury tend to

use only deterministic and semi-deterministic code.

Another approach to building the annotated trace would be to do so pro-actively,

instead of on demand. In most cases the majority of debugging time is spent waiting for

the user’s response to queries. This time could instead be spent pro-actively building new

portions of the annotated trace. We could adopt a heuristic that assumes the user would

answer “no” to most questions. While the user is deciding on their answer we might start

materializing implicit subtrees reachable from the current node. If the user did answer

“no” then the search could continue downwards without the user having to wait for the

subtrees to be materialized. If the user answered “yes” then there would be no penalty,

since the part of the tree above the node would already have been materialized.

There are situations where it is hard to avoid materializing almost all of the annotated

trace. This situation can arise, for example, if we wish to track a subterm from some point

near the end or the program to its origin near the start of the program. It can be the case

that the value of the subterm occurs everywhere in the program (perhaps it is that value

of some input parameter). In this case the track function from section 4.3, figure 4.10

will cause almost all of the annotated trace for the program to be materialized. There are

several solutions to this. One is to simply discard parts of the annotated trace if memory

becomes tight. The parts that could be discarded might be the subtrees of calls into which

the subterm is passed in and out of unmodified. This solves the space problem, but doesn’t

address the time problem — the annotated trace for the discarded subtree must still be

initially constructed for the track function to work, which takes time. Another approach is

to modify the track function so that it can detect the situation where a subterm is passed

into a node and then returned from the node unmodified, without it having to explore the

subtree rooted at that node. One way to do this is to check if there is a pointer to the

same subterm in the input arguments of an atom where the subterm appears in an output

argument of the atom. Searching through all input subterms of course might end up taking

124

longer than just materializing the subtree if the terms are big. One heuristic which could

be used to reduce the time taken to perform this check might be to only look in input

arguments of the same type as the output argument the subterm appears in and then

only check at the same position the subterm appears at in the output argument. Another

heuristic would be to check only arguments whose names are the same as the argument

the subterm is in, except for a numeric suffix (such as ‘ProcInfo’ and ‘ProcInfo0’). This

convention would indicate that one of these arguments is an update verson of the other

and so if the subterm appeared in any of the input arguments it would most likely appear

in the one with the similar name.

7.3 Making questions easier to answer

Making questions easier to answer needs to be the main focus of future research. We have

discovered that in practice it is more important to make the questions easier to answer than

it is to reduce the number of questions. For example consider two possible scenarios where

the debugger, employing one search strategy asks only one question to find a bug. The

question it asks is, however, very difficult to answer and it takes 2 hours to do so without

any interruptions. Suppose that another search strategy takes 120 questions to find the

same bug, but each question is very easy and only takes a minute to answer. Which search

strategy is better? If the user is able to spend two uninterrupted hours on the problem,

then they both find the bug in the same amount of time. However if the user is interrupted,

then when they return to their debugging session, they will have to first recall all they had

learnt while trying to answer the one hard question, but they will still be able to answer the

next easy question in one minute. This means that with interruptions the search strategy

which asks one question could take much longer than the search strategy which asks 120

questions. Interruptions are a fact of life in most work environments.

There are several ways to reduce the complexity of the debugger’s questions. One

solution which needs to be investigated is whether a search strategy which simply favours

simpler questions would be more effective. A heuristic which could be used to determine

which questions are simpler would be how many characters are required to display the

question on screen. Perhaps this could be combined with divide-and-query so that the

search would prefer simpler questions which also eliminate many nodes when answered.

This could be done by applying the divide-and-query algorithm to the subset of suspects

whose complexity is below a certain threshold.

125

Often questions contain data structures which appear in previous questions, or even

in different arguments of the same question. Pointing out these common subterms to the

user would mean the user would not have to re-explore the save structures only to discover

they have seen the structure before. This would also indicate to the user which terms are

different, when the user would have expected them to be the same. An enhancement to

this approach would be to show users only the differences between arguments of successive

questions (if the differences are small). This would make the questions easier to answer,

since it is often only the changes a call makes to a data structure which indicate whether

the call is correct or erroneous.

Delta debugging techniques [55] could also be applied to the input of erroneous calls

to reduce the size of the input, but maintain the erroneous behaviour. The user might

have to supply some test which determines whether the behaviour is erroneous or not (if

the symptom is a thrown exception then the test is trivial). Delta debugging could then

be applied to reduce the size of the question. This would also mean that a different EDT

would be searched, since the computation would be different, however the bug found would

most likely be the same.

7.4 Handling destructive update

Currently the declarative debugger cannot debug code which updates mutable data struc-

tures, such as arrays, since changes to mutable structures cannot be undone and so the

program state cannot be rewound.

A simple solutions to this problem is to apply the same solution we currently use for

handling code which does I/O (section 3.5). This would, however, mean that we would

not be able to look at a mutable value in its entirety. Instead we would only be able to

able to see the primitive operations which have been performed on the value. It remains

to be seen whether this information will be useful enough to aid with debugging.

Copying mutable values before they are updated is another alternative, although this

would be too expensive for big data structures such as large arrays.

7.5 Impure code

Mercury supports the controlled use of side effects through an impurity system [11]. The

impurity system allows for impure or semipure predicates. Calls to impure predicates

126

produce side effects. The output of semipure calls can be different for different calls with the

same input. Semipure calls do not however produce any side-effects. Impure goals cannot

be reordered with respect to each other. Semipure goals can be reordered inbetween two

impure goals, but cannot be reordered with respect to the impure goals. This is because

semipure goals may depend on the side-effects of impure calls.

Impurity is often used to implement pure interfaces for libraries written in impure

languages, such as C. Impure predicates can be made pure, for example by calling them

from a predicate which accepts an I/O state pair. The side-effects are therefore reflected

in the I/O state arguments.

Because impure goals produce side effects we cannot apply the same rules for deter-

mining the children of a node in the EDT for impure calls as we do for pure goals. Instead

the children of an exit or fail raw EDT node corresponding to any impure call would

likely have to be all the assertions events on the stratum leading up to the exit or fail.

This is because any of the impure children could affect the results of subsequently

executed children. Even if a child is declared to be pure it may be the case that the purity

promise is actually a bug, and we would like the debugger to detect such bugs. Determining

which child calls are necessary and sufficient to determine the result of the parent call in

the presence of impurity requires further research.

At present impurity does not represent much of a problem. For example in the source

code for the Mercury compiler, there are no impure goals. Some library predicates (such

as solutions) are implemented with impurity, but most of these have been thoroughly

tested, so their promised pure interfaces are very likely to actually be pure. However the

need to debug impure code will be increasing. This is because of the recent addition of logic

constraint programming capabilities to Mercury. Here impure code is used to implement

a pure interface to a constraint solver. The impure code used to implement the constraint

solvers is usually much more complex than a simple interface to a foreign library, so there

would be much more need for good debugging support.

127

Chapter 8

Conclusion

We have taken an existing top-down declarative debugger for Mercury and made it into a

practical debugging tool which is capable of finding real bugs in complex programs.

Our debugger can handle I/O and exceptions which makes it applicable to most Mer-

cury programs. Useful features such as (a) the ability to trust predicates, functions or

entire modules, (b) inadmissibility (c) “don’t know” responses and (d) customisable term

visualisations make the debugger easier use.

The debugger implements new and efficient, algorithms for two previously known search

strategies, namely divide-and-query and subterm dependency tracking.

Divide and query is useful for quickly reducing the size of a large search space; that’s

what it was designed for. In our experience, divide and query is best used when the user

is quite familiar with the intended semantics of most of the predicates involved. This

is important, because the sequence of questions it asks can be very confusing to anyone

unfamiliar with the code. In our experience, for smaller search spaces top down search is

much more comfortable to use, even though it asks more questions, because the sequence

of questions it asks generally follows the flow of execution of the program. This means that

successive questions are clearly and closely related, making them much easier to answer.

This effect is due to the cache-like behavior of people’s short-term memory; you don’t have

to explore a possibly large term if you have explored a closely related term a few seconds

ago, and you know what their relationship is. The random jumps made by divide and

query virtually guarantee that there will be no meaningful relationships between successive

questions, and even when there are (typically towards the end, where the suspect set is

small) the user typically doesn’t know about them. That said divide-and-query can be

very useful to quickly reduce a large search space where the questions are simple enough

128

to answer without any context.

Tracking the origin of a subterm can be even more effective than divide and query at

reducing the size of the search space, especially if the subterm is generated far away from

where it is marked. The question about the atom which bound the subterm is generally

also simpler than its predecessor, since its output is usually smaller than the term that the

subterm appeared in when it was marked. In our experience, the sequence of questions

generated by subterm dependency tracking is quite easy for the user to understand despite

the large jumps it makes in the tree. This is because successive questions are closely related

in a way that is meaningful to the user.

The user may use all three algorithms (top down, divide and query and subterm de-

pendency tracking), switching between them and the conventional procedural debugger at

will. This allows users to use whichever method they believe is best suited to the problem

at hand, and makes them feel more in control. To make the best use of this flexibility,

users of course need to understand the strengths and weaknesses of each algorithm.

From our practical experience the user should have as many tools available as possible

to assist them in their debugging task. The user should also be able decide what role the

declarative debugger plays in the debugging process, because in some cases it is sufficient

to look at the value of a particular variable at a certain point in the execution to know what

the bug is. It should also be easy for the user to impart any knowledge of the program and

bug they might have to the declarative debugger so that it can be as helpful as possible

when it is needed.

Ducassé [14] makes the point that different debugging strategies can be complementary

if combined in the same system. We have implemented a hybrid approach to debugging

making use of features from the declarative and procedural debugger and have found this

to be an effective and flexible method in practice. This approach is also validated by the

examples we give as case studies and other expriences we have had.

During our implementation of the Mercury declarative debugger it also became appar-

ent that we needed a new technique to control the resources consumed by the annotated

trace. The existing techniques in the literature were inadequate in the presence of multiple

search strategies.

We have examined three new methods for determining how much of the annotated to

build in a single reexecution. Two of these methods rely on approximations of the tree.

These fell short for realistic programs with unpredictable tree shapes.

Our third method, which used a histogram to calculate exactly how much of the tree

129

could be viably generated in a single reexecution, proved much more promising for real

programs. The additional space and time cost turned out to be surprisingly small.

The techniques presented for controlling the size of the generated EDT are certainly

not specific to Mercury. They could be applied to any declarative debugger where there is

a tree that must be searched and a mechanism whereby the necessary information could

be gathered for implicit parts of the tree.

By applying the debugger to real examples we have gained valuable insight in to how

declarative debugging can be applied in practice and also what its limitations are. Mercury

was designed to build large-scale, efficient and reliable systems. We have shown that the

Mercury declarative debugger is now up to the task of debugging those same software

systems.

130

Bibliography

[1] Dominic Frank Julian Binks. Declarative Debugging in Gödel. PhD thesis, University of

Bristol, September 1995.

[2] Inquiry Board. Ariane 5, flight 501 failure report, July 1996. Available from

http://www.cs.unibo.it/˜laneve/papers/ariane5rep.html.

[3] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative environment. Soft-

ware Practice and Experience, 18:807–820, 1988.

[4] Mark Brown and Zoltan Somogyi. Annotated event traces for declarative debugging. Avail-

able from http://www.cs.mu.oz.au/mercury/, 2003.

[5] Lawrence Byrd. Understanding the control flow of Prolog programs. In Proceedings of the

1980 Logic Programming Workshop, pages 127–138, Debrecen, Hungary, July 1980.

[6] Miguel Calejo. A framework for declarative Prolog debugging. PhD thesis, Universidade

Nova de Lisboa, March 1992.

[7] M. Cameron, M. Garca de la Banda, K. Marriott, and P. Moulder. ViMer: A visual debugger

for Mercury. In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative

Programming, pages 56–66, 2003.

[8] Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace. Testing

and Tracing Lazy Functional Programs using QuickCheck and Hat. In 4th Summer School

in Advanced Functional Programming, number 2638 in LNCS, pages 59–99, Oxford, August

2003.

[9] Jonathan J. Cook. Reverse execution of Java bytecode. The Computer Journal, 45(6):608–

619, 2002.

[10] Neil Deakin and Aaron Andersen. The Mozilla XUL reference and tutorial. Available from

http://www.xulplanet.com/, 2004.

131

[11] Tyson Dowd, Peter Schachte, Fergus Henderson, and Zoltan Somogyi. Using impurity

to create declarative interfaces in Mercury. Technical Report 2000/17, Department of

Computer Science, University of Melbourne, Melbourne, Australia, 2000. Available from

http://www.cs.mu.oz.au/mercury/.

[12] Tyson Dowd, Zoltan Somogyi, Fergus Henderson, Thomas Conway, and David Jeffery. Run

time type information in Mercury. In Proceedings of the 1999 International Conference

on the Principles and Practice of Declarative Programming, pages 224–243, Paris, France,

September 1999.

[13] Wlodzimierz Drabent, Simin Nadjm-Tehrani, and Jan Maluszynski. Algorithmic debugging

with assertions. In Workshop on Meta-Programming in Logic, pages 501–521, 1988.

[14] Mireille Ducassé. A pragmatic survey of automated debugging. In Proceedings of the First

International Workshop on Automated and Algorithmic Debugging, pages 1–15, London, UK,

1993. Springer-Verlag.

[15] G. Ferrand. Error diagnosis in logic programming, an adaptation of E.Y. Shapiro’s method.

Journal of Logic Programming, 4(3):177–198, 1987.

[16] Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, and Tibor Gyimóthy. Generalized al-

gorithmic debugging and testing. ACM Letters on Programming Languages and Systems,

1(4):303–322, 1992.

[17] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient relevant slicing method

for debugging. SIGSOFT Software Engineering Notes, 24(6):303–321, 1999.

[18] Pat M. Hill and John W. Lloyd. The Gödel programming language. MIT Press, 1994.

[19] Visit Hirunkitti and Christopher J. Hogger. A generalised query minimisation for program

debugging. In Proceedings of the First International Workshop on Automated and Algorith-

mic Debugging, pages 153–170, 1993.

[20] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence

graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60, 1990.

[21] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–

163, 1988.

[22] Robert A. Kowalski and Fariba Sadri. Logic programs with exceptions. In Proceedings of the

Seventh International Conference on Logic Programming, pages 598–613, Jerusalem, Israel,

June 1990.

132

[23] Bil Lewis. Debugging backwards in time. In Proceedings of the Fifth International Workshop

on Automated and Algorithmic Debugging, Ghent, Belgium, September 2003.

[24] John W. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2):133–154,

1987.

[25] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 1993.

[26] Jan Lönnberg, Ari Korhonen, and Lauri Malmi. MVT: a system for visual testing of software.

In AVI ’04: Proceedings of the working conference on Advanced visual interfaces, pages 385–

388, New York, NY, USA, 2004. ACM Press.

[27] Ian MacLarty, Zoltan Somogyi, and Mark Brown. Divide-and-query and subterm dependency

tracking in the Mercury declarative debugger. July 2005. To appear in the proceedings of the

Sixth International Symposium on Automated and Analysis-driven Debugging, Monterey,

California, September 2005.

[28] M. Maeji and T. Kanamori. Top-down zooming diagnosis of logic programs. ICOT Technical

report TR-290, Institute for New Generation Computer Technology, Tokyo, Japan, August,

1987.

[29] Sougata Mukherjea and John T. Stasko. Toward visual debugging: integrating algorithm

animation capabilities within a source-level debugger. ACM Trans. Comput.-Hum. Interact.,

1(3):215–244, 1994.

[30] B. A. Myers. Visual programming, programming by example, and program visualization: a

taxonomy. In CHI ’86: Proceedings of the SIGCHI conference on Human factors in comput-

ing systems, pages 59–66, New York, NY, USA, 1986. ACM Press.

[31] Lee Naish. Declarative diagnosis of missing answers. New Generation Computing, 10(3):255–

285, 1992.

[32] Lee Naish. A declarative debugging scheme. Journal of Functional and Logic Programming,

1997(3), April 1997.

[33] Lee Naish. A three-valued declarative debugging scheme. Australian Computer Science

Communications, 22(1):166–173, January 2000.

[34] Lee Naish and Timothy Barbour. Towards a portable lazy functional declarative debugger.

Australian Computer Science Communications, 18(1):401–408, January 1996.

133

[35] Henrik Nilsson. Tracing piece by piece: affordable debugging for lazy functional languages.

In Proceedings of the 1999 ACM SIGPLAN international conference on Functional program-

ming, pages 36–47, Paris, France, September 1999. ACM Press.

[36] Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional languages.

Journal of Functional Programming, 4(3):337–370, July 1994.

[37] Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy functional

debugging. Automated Software Engineering, 4(2):121–150, April 1997.

[38] Dino Pedreschi and Salvatore Ruggieri. Verification of logic programs. Journal of Logic

Programming, 39(1–3):125–176, 1999.

[39] L. M. Pereira and M. Calejo. A framework for Prolog debugging. In R. A. Kowalski and

K. A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Conference

and Symposium (Volume 1), pages 481–495, Cambridge, MA, 1991. MIT Press.

[40] Luis Moniz Pereira. Rational debugging in logic programming. In Proceedings of the Third

International Conference on Logic Programming, pages 203–210, London, England, June

1986.

[41] Luis Moniz Pereira and Miguel Calejo. Algorithmic debugging of prolog side-effects. In EPIA

89: Proceedings of the 4th Portuguese Conference on Artificial Intelligence, pages 151–162,

London, UK, 1989. Springer-Verlag.

[42] D. A. Plaisted. An efficient bug location algorithm. In Proceedings of the Second International

Logic Programming Conference, pages 151–158, Uppsala, Sweden, July 1984.

[43] B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-98. In Fifth

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, pages

230–240, 2003. ISBN:1-58113-705-2.

[44] Stéphane Schoenig and Mireille Ducassé. A backward slicing algorithm for Prolog. In

Third International Static Analysis Symposium, pages 317–331, Aachen, Germany, Septem-

ber 1996.

[45] Ehud Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

[46] Zoltan Somogyi. Idempotent I/O for safe time travel. In Proceedings of the Fifth Interna-

tional Workshop on Automated and Algorithmic Debugging, pages 13–24, Ghent, Belgium,

September 2003.

134

[47] Zoltan Somogyi and Fergus Henderson. The implementation technology of the Mercury

debugger. In Proceedings of the Tenth Workshop on Logic Programming Environments,

pages 35–49, Las Cruces, New Mexico, November 1999.

[48] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mer-

cury, an efficient purely declarative logic programming language. Journal of Logic Program-

ming, 26(1-3):17–64, October-December 1996.

[49] Jan Sparud and Colin Runciman. Complete and partial redex trails of functional computa-

tions. Lecture Notes in Computer Science, 1467:160–177, 1998.

[50] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view tracing

for Haskell: a new Hat. In Ralf Hinze, editor, Preliminary Proceedings of the 2001 ACM

SIGPLAN Haskell Workshop, pages 151–170, Firenze, Italy, September 2001.

[51] Mark Weiser. Program slicing. In Proceedings of the Fifth International Conference on

Software Engineering, pages 439–449, San Diego, California, 1981.

[52] Mark Weiser. Programmers use slices when debugging. Communications of the ACM,

25(7):446–452, 1982.

[53] Rickard Westman and Peter Fritzson. Graphical user interfaces for algorithmic debugging.

In Automated and Algorithmic Debugging, pages 273–286, 1993.

[54] Andreas Zeller. Isolating cause-effect chains with AskIgor. In IWPC ’03: Proceedings of

the 11th IEEE International Workshop on Program Comprehension, page 296, Washington,

DC, USA, 2003. IEEE Computer Society.

[55] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE

Transactions on Softwiare Engineering, 28(2):183–200, 2002.

[56] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In Revised Lec-

tures on Software Visualization, International Seminar, pages 191–204, London, UK, 2002.

Springer-Verlag.

135

