
Ontology Driven Software Development with Mercury
Michel Vanden Bossche, Peter Ross, Ian MacLarty, Bert Van Nuffelen, Nikolay Pelov

Melbourne – August 14th, 2007

Based on SWESE '07 paper “Ontology Driven Software Engineering for Real Life Applications”

22007-08-14

Outline

1. Motivation and History

2. Architecture Overview

3. OWL

4. Mercury

5. OWL Mercury (Hedwig)

6. Use Case: eInsurance Application

32007-08-14

The Company at a Glance

 Mission Critical
What Software Consultancy Firm

Who Software Engineers with a formal CS background (MSc, PhD)

When Founded in 1993

Where Brussels (Belgium) and Melbourne (Australia)

Origins Logic Programming (BIM Prolog) and Open Systems

Vision Much better CQFT1 requires a Paradigm Shift in SE

Products Business-Critical Customer-Facing Applications

Customers Information Intensive Companies

1 Cost, Quality, Flexibility, Time

42007-08-14

Motivation

 Software Development Hard
– Hard to write correct software

– Often a difference between what the client wants and
what the programmer thinks the client wants

– Hard to maintain software as specs change

– Hard to deliver software predictably in terms of cost and time

52007-08-14

GAP Between
Users and Programmers

62007-08-14

Using Ontologies
to Help Bridge the Gap

72007-08-14

Benefits of OWL
as a Modelling language

 Business feels more involved in project

 Makes requirements explicit
– Business people understand better the complexity of their domain

– Better time and cost estimates

– Early feedback, helps with project management

 Simple Formal semantics
– Provide an unambiguous “contract” between Business and IT

 Long Term Business Asset
– Ontologies not tied to a particular technology

– Knowledge not lost in code

 W3C Standard

82007-08-14

OWL

 Web Ontology Language

 Formal Description of a Domain
Classes (sets of individuals)
– Class Toys

Individuals (elements of classes)
– http://toys.com.au/toys.owl#buzzLightYear is an element of Toys

Properties (binary relations)
– number_of_batteries(buzzLightYear, 2)

– married_to(harry, sally)

Datatypes (XML Schema)
– string, float, int, 1..10

92007-08-14

OWL Classes

 SubClass Hierachy (subset relations)

 Union, Intersection, Complement

 Can assert individuals are members of Classes

 Example
– Class ElectronicToys
– ElectronicToys is a subclass of Toys
– Individual buzzLightyear is a member of ElectronicToys
– AnnoyingElectronicToys is the intersection of AnnoyingToys

and ElectronicToys

102007-08-14

OWL Properties

 Domains must be a class

 Ranges can be a Class or a Datatype
Examples
– Property designer has domain Toy and range Person
– Property number_of_batteries has domain ElectronicToy and

range positive integer

 Cardinality constraints
Examples
– Each Toy should have at least one designer (but maybe more)

– Every ElectronicToy should have exactly one value for their
number_of_batteries property

112007-08-14

OWL Properties (cont.)

 Range constraints
Examples
– Any OldToy should have a manufactured_year of less than 1960
– At least one designer of a Toy should be a member of the class

ImaginativePerson

 Transitive, Symmetric, Functional, Inverse
Functional, InverseOf

Examples
– older_than is a Transitive property

– married_to is a Symmetric property

– wife is the inverse of husband

122007-08-14

Limitations of OWL

 Not wide spread and not well-known (although gaining
traction)

 Open world assumption makes working with negation and
aggregation difficult

 OWL does not assume unique names, which complicates
reasoning (we have adopted UNA)

 Limited expressiveness, although can be extended with
SWRL

So far, expressive enough in practice

132007-08-14

Using Ontologies
to Help Bridge the Gap

142007-08-14

Requirements for a
Mercury – OWL API

 Ontologies should be integrated into the build system for the
application. Should not just be passive documentation.

 Compile-time errors, not runtime errors (like a lot of
RDMS APIs that use SQL query strings).

 Spec changes Code changes

 Mercury has a lot of compile-time checking features which
we can exploit.

152007-08-14

Mercury

 Developed at Melbourne University

 Logic Language with similar semantics and syntax to
pure Prolog

 Added benefits of strong type, mode and determinism
systems

 Module system

162007-08-14

Mercury (cont.)

 Pro
– Good engineering tool for developing large-scale robust applications

– Many compile time-checking features

– Efficient

 Cons
– Not widely known, therefore difficult to sell

– Requires experts to maintain, perceived as risky

 Try to ease client's fears by
– Coding business logic in OWL, a W3C standard

– Writing domain specific interpreters for the ontologies in Mercury

172007-08-14

Mercury API for OWL

 Generate binary predicates for properties (after inferring
all entailed facts from ontology):

:- pred number_of_batteries(uri, int).
number_of_batteries(“buzzLightYear”, 2).

:- pred designer(uri, uri).
designer(“buzzLightYear”, “janet”).
designer(“barbie”, “sarah”).
designer(“lego”, “harry”).

182007-08-14

Mercury API for OWL (cont.)

 For each class we generate an inst:

:- inst 'Toys'
---> “buzzLightYear”
; “barbie”
; “lego”.

:- inst 'ElectronicToy'
---> “buzzLightYear”.

:- inst 'EducationalToys'
---> “lego”.

192007-08-14

Mercury API for OWL (cont.)

 We use these insts in the mode declarations of the
predicates.

 Mode declarations give information about how a
predicate can be called.

 Determinism comes from cardinality restrictions.

:- mode number_of_batteries(in('ElectronicToy'), out) is det.

:- mode designer(in('Toy'), out('Person')) is multi.

:- mode designer(in('EducationalToy'), out('Teacher')) is det.

202007-08-14

Mercury API for OWL (cont.)

 For classes we also generate a unary predicate:

:- pred 'Toy'(uri).
:- mode 'Toy'(ground >> 'Toy') is semidet.
:- mode 'Toy'(out('Toy')) is multi.

'Toy'(“buzzLightYear”).
'Toy'(“barbie”).
'Toy'(“lego”).

212007-08-14

Example Code

 Some example code using the API:

:- pred fulfill_order(uri::in('Item'), ...) is det.
fulfill_order(Item, ...) :-

(if 'Toy'(Item) then
(Item = “barbie”,... code for ordering barbie ...; Item = “lego”,... code for ordering lego ...; Item = “buzzLightYear”,number_of_batteries(Item, Batteries),... code for ordering buzz with batteries ...)else
... code for ordering other items ...).

222007-08-14

Actual API a bit more complex,
because…

 No empty inst in Mercury, so this only works for non-empty
classes. Most classes will be empty in initial development
stage.

 Subtype insts not supported very well in Mercury standard
library.

 Some classes and properties may change at runtime.

232007-08-14

Real API

 Abstract type for each OWL class

 Typeclass for each OWL class

 Functions for converting between type and uri of the right inst

 Casting predicates

 “snapshot” argument for classes and properties that change at
runtime.

:- type 'Toy'.
:- typeclass 'Toy'(T).
:- instance 'Toy'('Toy').
:- instance 'Toy'('ElectronicToy').
:- pred designer(T::in, 'Person'::out) is multi <= 'Toy'(T).

242007-08-14

Non-Toy Application

 What?
– eInsurance, “Non-Life”, Business Transaction at Point of Sales

– 4000+ Brokers, Agents, Partners, Clients

– Key selling point: fully dynamic “Shopper Screen”

– Maximize “Straight Through Processing” ⇒ Many rules

– Dynamic roles, powers, preferences

– Reuse back-ends systems for some back-office functions

 Key Development Constraint
– Only 35% of requirements known at kick-off

252007-08-14

Result

 All requirements accepted (Shopper Screen refused by others)
 OWL, RDF, Mercury, DSL Interpreter (Rules), AJAX UI (XUL)…
 Semantic Service Broker based on OWL-S for back-ends
 Scalable stateless application engine, < 3 sec response time
 Portable: Windows, Linux, Unix, MacOS
 Development team: 10 (MC) + 2 (Customer)
 Completed in 1/3 person-months (p.m) of the next closest quote
 Completed in 1/3 p.m for a similar application (1.5 MLOC of Java)
 45 KLOC (program), 212 classes + 40 K instances (ontology)

262007-08-14

Running Application

272007-08-14

Questions
&

Comments

