’@(riticj .com

Ontology Driven Software Development with Mercury

Michel Vanden Bossche, Peter Ross, Ian Maclarty, Bert Van Nuffelen, Nikolay Pelov

Melbourne — August 14, 2007

Based on SWESE '07 paper “Ontology Driven Software Engineering for Real Life Applications”

2007-08-14

A A S o i

Outline

Motivation and History
Architecture Overview

OWL

Mercury

OWL - Mercury (Hedwig)

Use Case: elnsurance Application

P=N

.

The Company at a Glance [

» Mission Critical

What Software Consultancy Firm

Who Software Engineers with a formal CS background (MSc, PhD)
When Founded in 1993

Where Brussels (Belgium) and Melbourne (Australia)

Origins Logic Programming (BIM Prolog) and Open Systems
Vision Much better CQFT! requires a Paradigm Shift in SE
Products Business-Critical Customer-Facing Applications
Customers Information Intensive Companies

! Cost, Quality, Flexibility, Time

2007-08-14

2007-08-14

Motivation

» Software Development Hard
Hard to write correct software

Often a difference between what the client wants and
what the programmer thinks the client wants

Hard to maintain software as specs change
Hard to deliver software predictably in terms of cost and time

P=

GAP Between &
Users and Programmers

Business]
Uoore (= Business-ITGap
Formal Description Exec

2007-08-14 5

2007-08-14

Using Ontologies
to Help Bridge the Gap

Business .
H Gﬂlogles h

Formal Description
(OWL)

&

2007-08-14

Benefits of OWL
as a Modelling language

Business feels more involved in project

Makes requirements explicit
Business people understand better the complexity of their domain

Better time and cost estimates
Early feedback, helps with project management

Simple Formal semantics
Provide an unambiguous “contract” between Business and IT

Long Term Business Asset
Ontologies not tied to a particular technology

Knowledge not lost in code

W3C Standard

£~

2007-08-14

OWL

» Web Ontology Language

» Formal Description of a Domain
Classes (sets of individuals)
Class Toys

Individuals (elements of classes)
http://toys.com.au/toys.owl#buzzLightYear is an element of Toys

Properties (binary relations)
number_of_batteries(buzzLightYear, 2)
married_to(harry, sally)

Datatypes (XML Schema)
string, float, int, 1..10

£~

2007-08-14

OWL Classes

SubClass Hierachy (subset relations)
Union, Intersection, Complement
Can assert individuals are members of Classes

Example
Class ElectronicToys

ElectronicToys is a subclass of Toys
Individual buzzLightyear is a member of ElectronicToys

AnnoyingElectronicToys is the intersection of AnnoyingToys
and ElectronicToys

=\

B i 4

2007-08-14

OWL Properties

» Domains must be a class

» Ranges can be a Class or a Datatype

Examples
Property designer has domain Toy and range Person
Property number_of_batteries has domain ElectronicToy and
range positive integer

» Cardinality constraints

Examples
Each Toy should have at least one designer (but maybe more)

Every ElectronicToy should have exactly one value for their
number_of_batteries property

=\

.

10

2007-08-14

=\

OWL Properties (cont.)

» Range constraints

Examples
Any OldToy should have a manufactured_year of less than 1960

At least one designer of a Toy should be a member of the class
ImaginativePerson

» Transitive, Symmetric, Functional, Inverse
Functional, InverseOf

Examples
older_than is a Transitive property

married_to is a Symmetric property
wife is the inverse of husband

.

11

2007-08-14

Limitations of OWL

Not wide spread and not well-known (although gaining
traction)

Open world assumption makes working with negation and
aggregation difficult

OWL does not assume unique names, which complicates
reasoning (we have adopted UNA)

Limited expressiveness, although can be extended with
SWRL

So far, expressive enough in practice

PN

- N 4

12

2007-08-14

Using Ontologies
to Help Bridge the Gap

Business q Gﬂlﬂg ies M

Formal Description Exec
(OWL)

&

13

2007-08-14

Requirements for a
Mercury — OWL API

P=N

Ontologies should be integrated into the build system for the
application. Should not just be passive documentation.

Compile-time errors, not runtime errors (like a lot of
RDMS APIs that use SQL query strings).

Spec changes - Code changes

Mercury has a lot of compile-time checking features which
we can exploit.

.

14

2007-08-14

P =\

Mercury

Developed at Melbourne University

Logic Language with similar semantics and syntax to
pure Prolog

Added benefits of strong type, mode and determinism
systems

Module system

15

P =\

Mercury (cont.)

» Pro
Good engineering tool for developing large-scale robust applications
Many compile time-checking features
Efficient

» Cons

Not widely known, therefore difficult to sell
Requires experts to maintain, perceived as risky

» Try to ease client's fears by
Coding business logic in OWL, a W3C standard

Writing domain specific interpreters for the ontologies in Mercury

2007-08-14 16

P =\

Mercury API for OWL

» Generate binary predicates for properties (after inferring
all entailed facts from ontology):

:- pred number of batteries(uri, int).
number of batteries(“buzzLightYear”, 2).

:- pred designer (uri, uri).
designer (“buzzLightYear”, “janet”).
designer (“barbie”, “sarah”).
designer (“lego”, “harry”).

2007-08-14 17

Mercury API for OWL (cont.)

» For each class we generate an inst:

.

2007-08-14

inst 'Toys'
-—=> “buzzLightYear”
; “barbie”

; “lego”.

inst 'ElectronicToy'
-—=> “buzzLightYear”.

inst 'EducationalToys'

-—=> “lego”.

18

Mercury API for OWL (cont.) €

» We use these insts in the mode declarations of the
predicates.

» Mode declarations give information about how a
predicate can be called.

» Determinism comes from cardinality restrictions.

:- mode number of batteries(in('ElectronicToy'), out) is det.
:— mode designer(in('Toy'), out('Person')) is multi.
:— mode designer (in('EducationalToy'), out('Teacher')) is det.

2007-08-14 19

2007-08-14

Mercury API for OWL (cont.)

» For classes we also generate a unary predicate:

:- pred 'Toy' (uri).
:— mode 'Toy' (ground >> 'Toy') is semidet.
:— mode 'Toy' (out('Toy')) is multi.

'Toy' (“buzzLightYear”) .
'Toy' (“barbie”) .
] Toy || (\\legoll) .

20

2007-08-14

Example Code

» Some example code using the API:

:- pred fulfill order(uri::in('Item'), ...) 1is det.
fulfill order(Item, ...) :-
(if 'Toy' (Item) then
(Item = “barbie”,
code for ordering barbie
; Item = “lego”,

... code for ordering lego
Item = “buzzLightYear”,
number of batteries(Item, Batteries),
code for ordering buzz with batteries

.
4

else
code for ordering other items

P=

.

21

2007-08-14

Actual API a bit more complex,
because...

» No empty inst in Mercury, so this only works for non-empty
classes. Most classes will be empty in initial development
stage.

» Subtype insts not supported very well in Mercury standard
library.

» Some classes and properties may change at runtime.

.

22

2007-08-14

PN

Real API

Abstract type for each OWL class

Typeclass for each OWL class

Functions for converting between type and uri of the right inst
Casting predicates

“snapshot” argument for classes and properties that change at
runtime.

type 'Toy'.

typeclass 'Toy' (T).

instance 'Toy' ('Toy').

instance 'Toy' ('ElectronicToy').

pred designer (T::in, 'Person'::out) is multi <= 'Toy' (T).

23

2007-08-14

Non-Toy Application

» What?
elnsurance, “Non-Life”, Business Transaction at Point of Sales
4000+ Brokers, Agents, Partners, Clients
Key selling point: fully dynamic “Shopper Screen”
Maximize “Straight Through Processing” 1 Many rules
Dynamic roles, powers, preferences
Reuse back-ends systems for some back-office functions

» Key Development Constraint
Only 35% of requirements known at kick-off

P=

24

2007-08-14

vV Vv Vv VvV VvV VvV VvV Vv v

F=\

Result

All requirements accepted (Shopper Screen refused by others)

OWL, RDF, Mercury, DSL Interpreter (Rules), AJAX UI (XUL)...

Semantic Service Broker based on OWL-S for back-ends
Scalable stateless application engine, < 3 sec response time
Portable: Windows, Linux, Unix, MacOS

Development team: 10 (MC) + 2 (Customer)

Completed in 1/3 person-months (p.m) of the next closest quote
Completed in 1/3 p.m for a similar application (1.5 MLOC of Java)
45 KLOC (program), 212 classes + 40 K instances (ontology)

25

2007-08-14

Running Application

Mas =0l
Fichier Edition Outil Aide Nouvelle fenétre DebugIT MASUnit Aide Fr M Logout
TARIFICATION
Accueil
ACTIONS Questions simulations Zoom contrats Grand total: 0,00 €
Calculer les benifications:
¥ Ajouter client
b Ajouter intervenant [¥éhicule: 1 - TOYOTA AVENSIS 2.0D4D 85 kW : Total: 0,00 €
b Ajouter adresse Auto - WEA - WinCar Divers - LAR - Protection Juridique Pastel 99 Divers - LAR - Protection Juridi
T Ajouter bipe de risque
;Emor;yi q Stds @ Dual =
Bitiment W R< Universal 0 ra N/ [0,00 [T Protection Juridique Fa72 000 | % | [T pratection Juridique 62,4
Contenu = RC Starter [i Y N/A | 0,00 [T Conduite de wéhiculs de tiers non occasionsl NAA I Repatrizrent du ushicule 474
Personne individu) IF RC Junier [i B3 N/A 0,00
Graupe de personnes - I P, Mobilis - Masi 53,00 N/A [0,00
:‘“"‘”,Eh_(”‘al "”d”,“) p [T P.J. Mobilis - Standard 35.00 N/A [0,00
es uéhicules d'une fa.
E— J [T Casco complet waleur conw. fr. 39 241735 N/A | 0,00 | %6
© Ajouter Hsgue)7 Casco complet waleur conw, fr. 5% 2221,48 N/A | 0,00 | 56
Wéhicule)7 Casco complet waleur conw, 1 fr, 336 2389,86 N/ 0,00 |96
b Ajouter produit [T Cascocomplet valeur conw, 1 fr. 5% 2288,12 N/A | 0,00 | 36
)T Casco complet valeur réelle fr. 3% 217359 N/A | 0,00 | 56
* G -)T Gasco complet valeur réelle fr, 5% 1000.32 NAA | 0,00 | 36
wpprimer clien
Ca SAditins . o) [Gasco partiel valeur conw, #3048 N/A [0,00 |36
wpprimer intervenan
e)T Gasco partiel valeur réelle 735,33 /A (000 | %
ppiner s ool NETrem— oo o
shicule
> SR [T Assistance premier uéhicule 65,00 NAA | 000
el [T Assistance second véhicule 44,00 N/A | 000
b Supprimer produit [T Conducteurformuls forfaitaire : A ZELD N/A [0,00
I conducteur formule forfaitaire : B 46,00 N/A | 0,00
. T Conducteur formule forfaitaire : C 68,00 N/A | 0,00
SO DGR l- Wector : tout conducteur 35,00 N/A | 0,00
T vector: conducteur designe 5500 N/A | 0,00
IB Formule WYector: ext. garantie IP < 159 N/A N/A | 0,00
Totad priree brute 0,00 € @ DROIT AU BONUS-BONUS A LA SOUSCR. ... 00 Torad
(% zans objet
Droit au Bonus-Bonus -~
A o oui
=7 & la souscription :
" nen
h—
S
4| | ’

Al 4

26

0000000000

Questions
&
Comments

A
A1 4

27

