
Ontology Driven Software Development with Mercury
Michel Vanden Bossche, Peter Ross, Ian MacLarty, Bert Van Nuffelen, Nikolay Pelov

Melbourne – August 14th, 2007

Based on SWESE '07 paper “Ontology Driven Software Engineering for Real Life Applications”

22007-08-14

Outline

1. Motivation and History

2. Architecture Overview

3. OWL

4. Mercury

5. OWL  Mercury (Hedwig)

6. Use Case: eInsurance Application

32007-08-14

The Company at a Glance

 Mission Critical
What Software Consultancy Firm

Who Software Engineers with a formal CS background (MSc, PhD)

When Founded in 1993

Where Brussels (Belgium) and Melbourne (Australia)

Origins Logic Programming (BIM Prolog) and Open Systems

Vision Much better CQFT1 requires a Paradigm Shift in SE

Products Business-Critical Customer-Facing Applications

Customers Information Intensive Companies

1 Cost, Quality, Flexibility, Time

42007-08-14

Motivation

 Software Development Hard
– Hard to write correct software

– Often a difference between what the client wants and
what the programmer thinks the client wants

– Hard to maintain software as specs change

– Hard to deliver software predictably in terms of cost and time

52007-08-14

GAP Between
Users and Programmers

62007-08-14

Using Ontologies
to Help Bridge the Gap

72007-08-14

Benefits of OWL
as a Modelling language

 Business feels more involved in project

 Makes requirements explicit
– Business people understand better the complexity of their domain

– Better time and cost estimates

– Early feedback, helps with project management

 Simple Formal semantics
– Provide an unambiguous “contract” between Business and IT

 Long Term Business Asset
– Ontologies not tied to a particular technology

– Knowledge not lost in code

 W3C Standard

82007-08-14

OWL

 Web Ontology Language

 Formal Description of a Domain
Classes (sets of individuals)
– Class Toys

Individuals (elements of classes)
– http://toys.com.au/toys.owl#buzzLightYear is an element of Toys

Properties (binary relations)
– number_of_batteries(buzzLightYear, 2)

– married_to(harry, sally)

Datatypes (XML Schema)
– string, float, int, 1..10

92007-08-14

OWL Classes

 SubClass Hierachy (subset relations)

 Union, Intersection, Complement

 Can assert individuals are members of Classes

 Example
– Class ElectronicToys
– ElectronicToys is a subclass of Toys
– Individual buzzLightyear is a member of ElectronicToys
– AnnoyingElectronicToys is the intersection of AnnoyingToys

and ElectronicToys

102007-08-14

OWL Properties

 Domains must be a class

 Ranges can be a Class or a Datatype
Examples
– Property designer has domain Toy and range Person
– Property number_of_batteries has domain ElectronicToy and

range positive integer

 Cardinality constraints
Examples
– Each Toy should have at least one designer (but maybe more)

– Every ElectronicToy should have exactly one value for their
number_of_batteries property

112007-08-14

OWL Properties (cont.)

 Range constraints
Examples
– Any OldToy should have a manufactured_year of less than 1960
– At least one designer of a Toy should be a member of the class

ImaginativePerson

 Transitive, Symmetric, Functional, Inverse
Functional, InverseOf

Examples
– older_than is a Transitive property

– married_to is a Symmetric property

– wife is the inverse of husband

122007-08-14

Limitations of OWL

 Not wide spread and not well-known (although gaining
traction)

 Open world assumption makes working with negation and
aggregation difficult

 OWL does not assume unique names, which complicates
reasoning (we have adopted UNA)

 Limited expressiveness, although can be extended with
SWRL

So far, expressive enough in practice

132007-08-14

Using Ontologies
to Help Bridge the Gap

142007-08-14

Requirements for a
Mercury – OWL API

 Ontologies should be integrated into the build system for the
application. Should not just be passive documentation.

 Compile-time errors, not runtime errors (like a lot of
RDMS APIs that use SQL query strings).

 Spec changes  Code changes

 Mercury has a lot of compile-time checking features which
we can exploit.

152007-08-14

Mercury

 Developed at Melbourne University

 Logic Language with similar semantics and syntax to
pure Prolog

 Added benefits of strong type, mode and determinism
systems

 Module system

162007-08-14

Mercury (cont.)

 Pro
– Good engineering tool for developing large-scale robust applications

– Many compile time-checking features

– Efficient

 Cons
– Not widely known, therefore difficult to sell

– Requires experts to maintain, perceived as risky

 Try to ease client's fears by
– Coding business logic in OWL, a W3C standard

– Writing domain specific interpreters for the ontologies in Mercury

172007-08-14

Mercury API for OWL

 Generate binary predicates for properties (after inferring
all entailed facts from ontology):

:- pred number_of_batteries(uri, int).
number_of_batteries(“buzzLightYear”, 2).

:- pred designer(uri, uri).
designer(“buzzLightYear”, “janet”).
designer(“barbie”, “sarah”).
designer(“lego”, “harry”).

182007-08-14

Mercury API for OWL (cont.)

 For each class we generate an inst:

:- inst 'Toys'
---> “buzzLightYear”
; “barbie”
; “lego”.

:- inst 'ElectronicToy'
---> “buzzLightYear”.

:- inst 'EducationalToys'
---> “lego”.

192007-08-14

Mercury API for OWL (cont.)

 We use these insts in the mode declarations of the
predicates.

 Mode declarations give information about how a
predicate can be called.

 Determinism comes from cardinality restrictions.

:- mode number_of_batteries(in('ElectronicToy'), out) is det.

:- mode designer(in('Toy'), out('Person')) is multi.

:- mode designer(in('EducationalToy'), out('Teacher')) is det.

202007-08-14

Mercury API for OWL (cont.)

 For classes we also generate a unary predicate:

:- pred 'Toy'(uri).
:- mode 'Toy'(ground >> 'Toy') is semidet.
:- mode 'Toy'(out('Toy')) is multi.

'Toy'(“buzzLightYear”).
'Toy'(“barbie”).
'Toy'(“lego”).

212007-08-14

Example Code

 Some example code using the API:

:- pred fulfill_order(uri::in('Item'), ...) is det.
fulfill_order(Item, ...) :-

(if 'Toy'(Item) then
(Item = “barbie”,... code for ordering barbie ...; Item = “lego”,... code for ordering lego ...; Item = “buzzLightYear”,number_of_batteries(Item, Batteries),... code for ordering buzz with batteries ...)else
... code for ordering other items ...).

222007-08-14

Actual API a bit more complex,
because…

 No empty inst in Mercury, so this only works for non-empty
classes. Most classes will be empty in initial development
stage.

 Subtype insts not supported very well in Mercury standard
library.

 Some classes and properties may change at runtime.

232007-08-14

Real API

 Abstract type for each OWL class

 Typeclass for each OWL class

 Functions for converting between type and uri of the right inst

 Casting predicates

 “snapshot” argument for classes and properties that change at
runtime.

:- type 'Toy'.
:- typeclass 'Toy'(T).
:- instance 'Toy'('Toy').
:- instance 'Toy'('ElectronicToy').
:- pred designer(T::in, 'Person'::out) is multi <= 'Toy'(T).

242007-08-14

Non-Toy Application

 What?
– eInsurance, “Non-Life”, Business Transaction at Point of Sales

– 4000+ Brokers, Agents, Partners, Clients

– Key selling point: fully dynamic “Shopper Screen”

– Maximize “Straight Through Processing” ⇒ Many rules

– Dynamic roles, powers, preferences

– Reuse back-ends systems for some back-office functions

 Key Development Constraint
– Only 35% of requirements known at kick-off

252007-08-14

Result

 All requirements accepted (Shopper Screen refused by others)
 OWL, RDF, Mercury, DSL Interpreter (Rules), AJAX UI (XUL)…
 Semantic Service Broker based on OWL-S for back-ends
 Scalable stateless application engine, < 3 sec response time
 Portable: Windows, Linux, Unix, MacOS
 Development team: 10 (MC) + 2 (Customer)
 Completed in 1/3 person-months (p.m) of the next closest quote
 Completed in 1/3 p.m for a similar application (1.5 MLOC of Java)
 45 KLOC (program), 212 classes + 40 K instances (ontology)

262007-08-14

Running Application

272007-08-14

Questions
&

Comments

