
Ontology Driven Software Engineering for Real
Life Applications

Michel Vanden Bossche1, Peter Ross2, Ian MacLarty2, Bert Van Nuffelen1, and
Nikolay Pelov1

1 {mvb,bvn,npe}@missioncriticalit.com
MISSION CRITICAL SA

Boulevard de France 9, Bat. A; B-1420 Braine-l’Alleud; Belgium
2 {pro,iml}@missioncriticalit.com

MISSION CRITICAL Australia Pty Ltd
Level 23 HWT Tower; 40 City Rd; Southbank VIC 3006; Australia

Abstract. In this paper we introduce ODASE (Ontology Driven Ar-
chitecture for Software Engineering). We present how we used ODASE
to build a 250 person month e-insurance project for a multi-national
insurance firm, where only 35% of the requirements were known at kick-
off. We required one third of the time of the next closest quote for the
project, and a similar project built classically at another insurance firm
required also around three times the resources.

1 Introduction

In development of any large scale software systems the Business has a vision
for a project to transform the company. However the vision is informally and
incompletely specified and subject to frequent changes that leads to the Business-
IT gap. This gap makes it difficult for IT to give a reasonable estimate of time and
cost for the project and impacts greatly on the business case. Our experience
shows that the gap can be bridged by describing the business knowledge in
a formal language understandable by Business and consumable by computer
programs.

The Web Ontology Language, OWL [5], was developed to facilitate greater
machine interpretability of human knowledge by providing additional vocabu-
lary along with formal semantics. The language forms a knowledge continuum
between Business and IT, and provides a mechanism by which the Business can
drive the evolution of the project by proposing concrete changes to the ontology.

By using the ontology as the “contract” between Business and IT, we deliv-
ered a large e-insurance project in 250 person-months. The project commenced
with only 35% of the requirements fully specified. All the other bids were higher
than 750 person-months, while some bid without any commitment to develop
the key features which would discriminate the project on the market-place.

In the next section we introduce our Ontology Driven Architecture for Soft-
ware Engineering, henceforth referred to as ODASE.

2 Development process using ODASE

The initial step in the ODASE development process is for representatives of the
Business to work with a domain modelling expert and build a formal model of the



business. This model expresses all the business knowledge that is needed for IT to
build the application. In our case the formal model is an OWL conceptual model.
This step forces the Business to make requirements explicit, if the information
needed can’t be modelled or is extremely complicated to model it indicates
instantly to the Business to think more about the feature they are trying to
model.

At the end of the first step, one has an initial model of the business. This
model can then immediately be evaluated by the Business adding example in-
stances. This population of the model may also raise issues about the expres-
siveness of the model, and thus the model is iteratively refined.

We refer to the start of the ODASE process as creating a knowledge contin-
uum. The ontology provides a “contract” about which both IT and the Business
agree on the meaning of the concepts. It also provides a mechanism that allows
the Business to formalize their specifications.

From this point on the actual application development starts. Here we fo-
cus on what we call the construction continuum: how IT uses the ontology to
build the system. Our premise is that it is a waste of effort to formally express
the specifications and then not use these specifications directly in the applica-
tion. One of the main advantages of OWL is that it is a declarative language
with a formal syntax and semantics. As such it can be used unambiguously by
computer programs. The construction continuum is realized by transferring the
knowledge expressed in the ontology to suitable objects, types and constructs in
the programming language of choice.

Fig. 1. Knowledge-Construction continuum

The process for transferring knowledge from the ontology to the programming
language is by automatic generation of source code. For the ODASE platform,
the underlying programming language is the Mercury language [6]. One of the
advantages of Mercury is that it is a strongly typed programming language.
This is critical for the ODASE development process because it makes it easier
to propagate changes in the model to the rest of the application. When the
model changes, the types will also change and the compiler will inform us of
all the places in the code which are no longer consistent with the new model.
Thus, the model can evolve without any concern of the code getting out of sync.
This can also provide us with feedback on the amount of code changes required
for evolving the model. This allows the Business to take informed decisions on

2



whether the evolution is on the critical path of the development, or should be
done later, or maybe modelled an alternative way.

The choice of the Mercury language also has another advantage. As it is a
logic programming language, OWL concepts can be represented in a natural
way. For example, an OWL class C can be represented as a unary predicate
C(x) and an OWL property P can be represented as a binary predicate P(x,y),
where domain and range restrictions are taken into account by the Mercury
types on the generated predicate type declaration, and cardinality restrictions are
expressed as mode declarations. Also, when applying the necessary assumptions
and language restrictions [1], the formal semantics of OWL and Mercury can
be matched so that a logical continuum emerges from the business logic to the
actual code (see Section 4).

3 Advantages of the ODASE approach

The key advantage of our approach is having a common agreement between
Business and IT expressed by the ontology. As the Business is intimately involved
in the construction of the ontology, they understand better the complexity of the
development involved, thereby increasing the trust between both parties. When
a requirement is difficult to express in the ontology, it gives a good indication
of the complexity to the Business. Thus giving an early feedback to determine
the trade-off between delay and functionality, a key requirement when time-to-
market is critical.

Shifts in the technology landscape are frequent: mainframe, client/server,
web 1.0, web 2.0, . . . However, moving to a new technology is expensive because
business knowledge is encoded in legacy systems. For example, a shift in the
user interface technology might be difficult, because the business logic cannot
be extracted from the technology dependent implementation.

Another key purpose in having a declarative description of the business
knowledge is that it is possible to exploit the same information in different ways.
For example, one can imagine a situation where validation rules are expressed in
the ontology. The standard usage is to check whether a rule evaluates to true or
false. Another usage is to determine for a rule that failed, the set of inputs caus-
ing the failure that are accessible on a user interface, allowing the corresponding
fields to be highlighted on the screen. When the rule has been directly encoded
in a program it is much more costly to provide this extra usage since a lot of
source code must be adapted.

According to some studies [2, Fig. 1] around 80% of an IT budget is spent do-
ing corrective and adaptive maintenance. In the e-insurance project, we reduced
this risk by building interpreters for manipulating the information specified in
the ontology. Since the code size of interpreters is in general smaller than code
which has hard-coded the domain, less code is subject to potential bugs. The
runtime performance cost of this approach was negligible compared to the in-
creased flexibility which was required for being able to react quickly to new
requests of the Business during the development.

During development, the Business populated the ontology with real data,
while some parts of the application and the ontology were not completely speci-
fied. This allowed the Business to validate their requirements in the application
at an early stage. A positive effect of this was that it allowed the Business to

3



identify weaknesses in the model early and consequently propose new concepts
to capture the intended business meaning. Since the new concepts are formally
expressed in the ontology, some adaptive maintenance is shifted from IT to the
Business.

From an IT perspective, ODASE has the advantage that it relies on the
formal semantics of the ontology, which means that major architectural changes
can be made with clear and predictable effects.

4 The Hedwig platform

Hedwig3 is the set of tools and libraries which we use to integrate an OWL
ontology into an application. The Hedwig platform is central to the ODASE
approach. It consists of several components that provide programmable access
to information in RDF and OWL. The major components are: static type-safe
access to ontologies, dynamic querying of ontologies, and a library for persistence
of RDF graphs (memory, ODBC, Berkeley DB), all accessible via an abstract
interface.

Hedwig supports various access patterns to ontologies. If both the ontology
structure (T-Box) and the set of instances (A-Box) are static, Hedwig gener-
ates a type-safe representation of the ontology structure and all instances. If the
ontology structure is static, but the instances can be updated at runtime, then
a type-safe representation of the ontology structure is generated along with a
declarative interface for updating the instances in the underlying RDF store. Fi-
nally if the ontology structure is dynamic — e.g. classes, properties and instances
can be modified at runtime — the ontology structure and the set of instances
are accessed through an OWL and RDF query language.

Due to lack of space we cannot provide a detailed comparison with other
integrations in programming languages. Most existing approaches focus on the
integration with Object Oriented programming languages (see [4] for general
discussion). Most existing integrations provide either an abstract interface to
the ontology or a type safe interface to an underlying updateable ontology store.
In addition to these, Hedwig can provide a fully static (including instances) view
on a static ontology. In that case we exploit the full potential of Mercury compiler
to validate and optimize the code at compile time. This ability of our platform
to offer both code generation and runtime query answering in a harmonised
language is a crucial technology decision as our goal is to be able to serve a wide
scope of applications with a maximum amount of automated code verification.

5 Future work

In our e-insurance application, a lot of the business rules and business compu-
tations were done in an internal domain specific language (DSL). The existence
of the DSL meant that no integration with an off-the-shelve business rule engine
was required. However in a completely green field implementation, a business
rule engine would be required. We are currently investigating SWRL [3] as the

3 Hedwig is a Mission Critical internal project and gets its name from the owl in the
Harry Potter books by J.K. Rowling.

4



basis for the rule engine in our Hedwig platform. This will involve the develop-
ment of a SWRL reasoning engine that is integrated with the rest of the ODASE
platform.

6 Conclusion

The approach outlined by this paper was followed for an e-insurance project
where only 35% of the requirements were known at kick-off. We have two ways
of comparing our approach with current software development practices. The
first is comparing the proposals for the e-insurance project, with the problem
that all proposals are just estimates. The second is by comparing with a similar e-
insurance application, with the problem that the functionality is not exactly the
same. Comparing our approach with the other proposals we note that the project
was completed with a third of the person months of the next closest quote. For a
similar e-insurance application built classically for another insurance company,
we also observed a factor of three difference for resource consumption.

This reduction in effort was due to the following advantages of the approach:

– common agreement between Business and IT;
– business knowledge never lost in a program;
– the same business knowledge representation is reusable for different purposes:

e.g. consistency checking, automated error reporting, etc.;
– new model data added by the business with no IT interaction required which

lowers costs;
– single language for domain experts and software engineers;
– single point of business definition;
– IT can rely on the formal semantics of the ontology;
– only new concepts require IT work;
– changes in the ontology are immediately reflected in the application;
– generating type-safe Mercury code from the business ontology made changes

easier.

References

1. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic. In Proceedings of 12th International
Conference on the World Wide Web, pages 48–57. ACM Press, 2003.

2. L. Hatton. Does OO sync with how we think? IEEE Software, 15(3):46–54,
May/June 1998.

3. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML. W3C Member
Submission 21 May 2004.

4. H. Knublauch, D. Oberle, P. Tetlow, and E. Wallace, editors. A semantic web primer
for object-oriented software developers. W3C Working Group Note 9 March 2006.

5. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language
semantics and abstract syntax. W3C Recomendation 10 February 2004.

6. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

5


