
1

DCGs + Memoing = Packrat Parsing
But is it worth it?

Ralph Becket and Zoltan Somogyi

NICTA and
Department of Computer Science and Software Engineering
The University of Melbourne, 111 Barry Street, Parkville

Victoria 3010, Australia
{rafe,zs}@csse.unimelb.edu.au

Abstract. Packrat parsing is a newly popular technique for efficiently
implementing recursive descent parsers. Packrat parsing avoids the po-
tential exponential costs of recursive descent parsing with backtracking
by ensuring that each production rule in the grammar is tested at most
once against each position in the input stream. This paper argues that
(a) packrat parsers can be trivially implemented using a combination
of definite clause grammar rules and memoing, and that (b) packrat
parsing may actually be significantly less efficient than plain recursive
descent with backtracking, but (c) memoing the recognizers of just one or
two nonterminals, selected in accordance with Amdahl’s law, can some-
times yield speedups. We present experimental evidence to support these
claims.

Keywords: Mercury, parsing, packrat, recursive descent, DCG, memoing,
tabling.

1 Introduction

Recursive descent parsing has many attractions: (a) it is simple to un-
derstand and implement; (b) all the features of the implementation lan-
guage are available to the parser developer; (c) complex rules can be
implemented easily (for instance, longest match, or A not followed by B);
(d) parsing rules may if necessary depend on ‘state’ such as the current
contents of the symbol table; and (e) higher order rules may be used
to abstract away common grammatical features (e.g. comma-separated
lists).

However, recursive descent parsing requires backtracking for gram-
mars that aren’t LL(1) and, in the worst case, that backtracking may lead
to exponential complexity. Consider the grammar in figure 1. Assuming
a top-down, left-to-right, recursive descent strategy, matching the non-
terminal “a” against the input string “xxxzzz” involves testing all possi-
ble length six expansions of a before succeeding.

2

a ::= b | c

b ::= ‘x’ d ‘y’

c ::= ‘x’ d ‘z’

d ::= a | epsilon

Fig. 1. A grammar with pathological recursive descent behaviour: a, b, c, d are
non-terminals; ‘x’, ‘y’, ‘z’ are terminals; epsilon matches the empty string.

Packrat parsing ensures linear complexity for such grammars by test-
ing each production rule at most once against each position in the input
stream. This is typically done by incrementally constructing a table map-
ping each (non-terminal, input position) pair to unknown, failed, or a
number n where parsing succeeded consuming n input tokens. (In prac-
tice the ‘succeeded’ entries may also contain other information, such as
abstract syntax tree representations of the matched input fragment.) Fig-
ure 2 gives an example of a packrat table being filled out.

Input position
1 2 3 4 5 6

a 6−15− 4−11− 2−7− failed−3−
b failed−13− failed−9− failed−5− failed−1−
c 6−14− 4−10− 2−6− failed−2−
d 4−12− 2−8− 0−4−

Fig. 2. Filling out a packrat table matching non-terminal a from figure 1 against
“xxxzzz”. Blank entries denote unknown, ‘failed’ denotes a non-match, numbers
denote successful parsing consuming that number of input tokens, and –subscripts–
show the order in which entries were added.

Packrat parsing has recently been made popular by packages such as
Pappy (Bryan Ford’s Haskell package [2]) and Rats! (Robert Grimm’s
Java package [3]).

There are two key problems with the packrat approach. First, the
table can consume prodigious amounts of memory (the Java parser gen-
erated by Pappy requires up to 400 bytes of memory for every byte of
input). Second, it cannot easily be extended to handle contextual informa-
tion, such as the current line number. Another, perhaps less significant,

3

problem is that the packrat table cannot be used for nondeterministic
grammars.

In this paper, we describe an alternative approach to packrat pars-
ing that can avoid these problems. First, section 2 shows that recursive
descent parsers can be constructed quite easily in Mercury [8] using Defi-
nite Clause Grammars [6]. Section 3 goes on to show how Mercury DCG
parsers can be trivially converted into packrat parsers by memoing the
recognition predicates of all the nonterminals, and that being selective
about what to memo has its advantages. Section 4 gives some interest-
ing performance results, comparing the Mercury approach with Robert
Grimm’s Rats! packrat parser generator. Section 5 concludes with a dis-
cussion of the relative merits of packrat parsers and plain DCG parsers.

2 Definite Clause Grammars

Logic programming languages such as Prolog and Mercury have built-in
support for coding recursive descent parsers in the form of definite clause
grammars (DCGs). The Mercury syntax of a DCG rule is

H --> B.

where H is the head of the rule (the non-terminal) and B is its body. The
syntax for the body is

B ::= [x1, ..., xn]

| B1, B2

| (if B1 then B2 else B3)

| B1 ; B2

| { G }

Body terms match as follows: [x1, ..., xn] succeeds iff the next n items
of input unify with x1 to xn respectively (these items are consumed by the
match); B1, B2 matches B1 followed by B2; (if B1 then B2 else B3)
matches either B1, B2, or just B3 in the case that B1 does not match at
the current position; B1 ; B2 matches either B1 or B2; { G } succeeds
iff the ordinary Mercury goal G succeeds. A body item not B is syntac-
tic sugar for (if B then { false } else { true }), where the goal
true always succeeds and the goal false always fails.

The compiler uses a simple source-to-source transformation to convert
DCG rules into ordinary Mercury. Every DCG rule becomes a predicate
with two extra arguments threaded through, corresponding respectively
to the representation of the input remaining before and after matching.
Figure 3 shows the transformation algorithm.

4

Transform H --> B into H(S0, S) :- <<B, S0, S>> where

<<[x1, ..., xn], S0, S>> = S0 = [x1, ..., xn | S]

<<(C1, C2), S0, S>> = some [S1] (<<C1, S0, S1>>,

<<C2, S1, S >>)

<<(if C then T = some [S1] (if <<C, S0, S1>>
else E), S0, S>> then <<T, S1, S >>

else <<E, S0, S >>)

<<(D1 ; D2), S0, S>> = (<<D1, S0, S>> ; <<D2, S0, S>>)

<<{ G } S0, S>> = G, S = S0

Fig. 3. Transforming DCG rules into plain Mercury. S0, S1, S are input stream
states.

By way of an example, the following DCG rule nat matches natural
numbers (as in Prolog, Mercury variable names start with an upper case
letter, while predicate names and function symbols start with a lower case
letter):

nat --> digit, digits.

digit --> [X], { char.is_digit(X) }.

digits --> (if digit then digits else { true }).

char.is_digit is a predicate in the Mercury standard library; it succeeds
iff its argument is a character between ’0’ and ’9’. Note that the last rule
implements longest match.

DCGs are very flexible: rules can take arguments and compute results.
The following version of nat returns the number matched as an integer:

nat(N) --> digit(D), digits(D, N).

digit(D) --> [X], { char.digit_to_int(X, D) }.

digits(M, N) -->

(if digit(D) then digits(10 * M + D, N) else { N = M }).

Here, digits takes M (the numeric value of the digits read so far) as a
parameter and computes N (the numeric value of the entire digit sequence
matched by the nonterminal) as the result. char.digit_to_int(X, D)
succeeds iff X is a digit, unifying D with its integer value.

Negation can allow for elegant disambiguation between rules:

integer(S, I) --> sign(S), nat(I), not frac_part(_F).

real(S, I, F) --> sign(S), nat(I), frac_part(F).

frac_part(F) --> [’.’], digit(D), frac(100.0, float(D) / 10.0, F).

5

frac(M, F0, F) --> (if digit(D)

then frac(M * 10.0, F0 + float(D) / M, F)

else { F = F0 }).

sign(S) --> (if [’-’] then { S = -1 } else { S = 1 }).

The pattern not frac_part(_F) succeeds iff frac_part(_F) fails, hence
the integer rule only matches natural numbers that are not followed by
a fractional part. Without this negated pattern, integer would match
the initial part of the lexeme of every real number.

Higher order DCG rules can be used to abstract out common gram-
matical patterns, such as these:

optional(P, X) -->

(if P(Y) then

{ X = yes(Y) }

else

{ X = no }

).

zero_or_more(P, List) -->

(if P(Head) then

zero_or_more(P, Tail),

{ List = [Head | Tail] }.

else

{ List = [] }

).

one_or_more(P, [Head | Tail]) -->

P(Head),

zero_or_more(P, Tail).

comma_separated_list(P, [Head | Tail]) -->

P(Head),

zero_or_more(comma_followed_by(P), Tail).

comma_followed_by(P, X) -->

[’,’],

P(X).

(In each of these cases P must be a DCG rule computing a single result.)
Using these higher order rules is quite simple. For example, one can

match a comma-separated list of natural numbers just by calling by calling
comma_separated_list(nat, Nats).

3 Using Memoing to Create Packrat Parsers

The Mercury compiler provides extensive support for several forms of
tabled evaluation. Memoing is one of these forms. When a memoized

6

predicate is called, it looks up its call table to see whether it has been
called with these arguments before. If not, it enters the input arguments
in the call table, executes as usual, and then records the output arguments
of each answer. On the other hand, if the predicate has been called with
these input arguments before, it returns the answers from the call’s answer
table directly, without executing the predicate’s code.

To memoize a Mercury predicate or function one need only add the
appropriate pragma. For example:

:- pragma memo(nat/3, <attributes>).

:- pragma memo(integer/4, <attributes>).

:- pragma memo(real/5, <attributes>).

The first argument of the memo pragma is the name/arity pair identifying
the predicate to be memoized. For DCG rules the arity component is
that of the Mercury predicate resulting from the DCG transformation of
figure 3, which adds two extra arguments to the DCG rule.

The second argument to the memo pragma is a list of attributes con-
trolling the memoization transformation. Valid attributes are:

– allow_reset tells the compiler to generate a predicate that the user
can call to clear the predicate’s memo table.

– statistics tells the compiler to keep statistics about all the accesses
to the predicate’s memo table, and to generate a predicate that user
code can call to retrieve these statistics.

– specified([...]) tells the compiler how to construct the call table.
The list should contain one element for each predicate argument. If
the argument is an input argument, this element can be value, addr
or promise_implied.
• value tells the compiler to table the full value of the argument. If

the term bound to this argument at runtime contains n function
symbols, this will take O(n) time and can create O(n) new nodes
in the call tree, so it can be slow.

• addr tells the compiler to table only the address of the argument,
which uses only constant time and space. The downside is that
while equal addresses imply equal values, nonequal addresses do
not imply unequal values. Therefore if any arguments are tabled
by address, two calls in which the values of all input arguments
are equal may nevertheless not be recognized as being the same
call, leading to the unnecessary recomputation of some previously
stored answers.

• promise_implied asserts that the corresponding argument need
not be stored or looked up in the call table, because the user

7

promises its value to be a function of the values of the other input
arguments.

If the argument is an output argument, the corresponding element
should be output.

– fast_loose tells the compiler to table all input arguments by address;
it is equivalent to a longer specified([...]) annotation.

For parsing applications, asking for all input arguments to be tabled by
address is almost always optimal.

Memoizing all the rules in a DCG parser essentially converts a recur-
sive descent parser into a packrat parser. The memoized predicates gener-
ated by the Mercury compiler employ hash tables with separate chaining.
Tables start small, but are automatically expanded when their load fac-
tors exceed a threshold. They therefore have O(1) expected lookup times,
the same order as packrat tables. Since hash tables are more complex
than mere 2D arrays, their constant factor is higher, but in practice, the
hash table approach may well be superior. This is because packrat tables
will nearly always be sparsely populated, so the hash tables probably
occupy less memory and are therefore likely to be more memory-system
friendly — one would expect significantly less paging when parsing any
sizeable amount of input. Of course, the packrat table can be compressed,
as in [4], but that erodes, eliminates, or even reverses the constant factor
advantage. Furthermore, it is a specialized optimization; with memoed
DCGs, any optimization of the memo tables is of general use. The more
general memoing mechanism has two further advantages: it works for
parsing nondeterministic grammars, and, more importantly, it supports
parameterized parsing rules, such as comma_separated_list.

4 Performance Evaluation

To see how memoized DCG parsers perform compared to packrat parsers,
we need both kinds of parsers for the same language, preferably a language
with lots of programs available as test data. We implemented a parser for
the Java language to allow comparison with results published for other
packrat parsers (e.g. [2], [3]).

4.1 Parser Structure

Our implementation is an almost direct transliteration of
the grammar provided in Sun’s Java Language Specifica-
tion (Second Edition) which can be found on-line at http:

8

//java.sun.com/docs/books/jls/second_edition/html/syntax.doc
.html. (Section 3 of that document specifies the lexical structure of
identifiers, primitive literals and so on). We did the translation into
Mercury done by hand (although doing so automatically would not
have been hard were it not for the occasional error in Sun’s published
grammar, such as the handling of instanceof expressions). We did not
take advantage of any opportunities for optimization.

We implemented a rule from Sun’s grammar such as

BlockStatement ::= LocalVariableDeclarationStatement

| ClassOrInterfaceDeclaration

| [Identifier :] Statement

as the Mercury DCG predicate

block_statement -->

(if local_variable_declaration_statement then

[]

else if class_or_interface_declaration then

[]

else

optional(label), statement

).

label -->

identifier,

punct(":").

[] is the DCG equivalent of a no-op goal and the grammatical conve-
nience [Identifier :] is replaced with a higher order call to one of the
predicates we showed in section 2. The higher order argument of that call
representing the identifier-colon pattern could have been an anonymous
lambda-expression, but making it a separate named predicate (label) is
more readable.

The reason why the predicate is only a recognizer (i.e. it doesn’t re-
turn anything useful like a parse tree) is to remove any differences in the
parse tree construction process as a source of unwanted variability in our
comparison with the Rats! packrat parser generator. Since Rats! views
nonterminals as being defined by an ordered list of productions, which
stops looking for parses using later productions after finding a parse using
an earlier production, this code also replaces the apparent nondetermin-
ism of the original grammar with a deterministic if-then-else chain. In
the absence of code to build parse trees, the identity of the production
that matches a nonterminal like block_statement doesn’t matter any-
way. Adapting the implementation to also construct an abstract syntax

9

tree would simply require an extra parameter in each DCG predicate’s
argument list, together with some simple code in each production to com-
pute its value. In fact, the definition of optional in section 2 assumes that
we are building parse trees; if we are not, we need to use this simplified
definition instead:

optional(P) -->

(if P then [] else []).

4.2 Experimental Setup

Our test load consisted of the 735 largest Java source files taken from a
randomly chosen large Java program, the Batik SVG toolkit. (More source
files would have exceeded the 20 Kbyte limit on the length of command
line argument vectors.) The input files range in size from a few hundred
lines to more than 10,000 lines; they total more than 900,000 lines and
9.6 Mbytes.

To evaluate packrat parsing, we used the xtc Java parser generated
with the Rats! optimizing packrat parser generator (version 1.12.0, re-
leased on 18 July 2007). We took the grammar specification from the
Rats! web site, so it should match the version used in Grimm’s paper [4].
We ran the generated parser both with and without the Java optimiza-
tion option (-Xms20m) recommended by Grimm, which starts the system
with a 20 Mb memory allocation pool. The startup times were nontrivial
either way, so figure 4 reports not just the time taken by each version to
parse the test load, but also the time taken by each version on the null
load (a single empty file), and the difference between them. The figures
represent user time in seconds; they were obtained by averaging the times
from 22 runs.

We also tried to test a packrat parser generated by Pappy, but we
could not get it to work.

To evaluate DCG parsing and memoing, we wrote a script that could
take a template Java parser written in Mercury and create several hun-
dred different versions of it. These versions varied along the following
dimensions.

Input representation. There are several possible ways to represent the
input and the current position of the parser in it. We tested five of
these.
chars: the state is a list of the characters remaining in the input.
single: the state is a triple: a string giving the entire contents of the

input file, the length of that string, and the current offset.

10

global: the state is just an integer, the current offset. The input string
and its length are stored in global variables, and accessed using
impure foreign language code.

pass1: the state is just an integer, the current offset, but the input
string and its length are passed around to every recognition pred-
icate as a pair in one extra input argument.

pass2: the state is just an integer, the current offset, but the input
string and its length are passed around to every recognition pred-
icate as two separate extra input arguments.

The chars approach increases the size of the input to be parsed eight-
fold (it uses one eight-byte cons cell per character), while the single
approach requires allocating a three-word cell on the heap for every
character match, so these should be slower than the other three.
All these alternatives assume that the entire input is available when
parsing starts. For non-interactive applications, this is ok. Interac-
tive applications can use other representations; they will probably be
slower, but interactive applications typically don’t care about that,
since in such systems the user is usually by far the slowest compo-
nent.

Mercury backend. The Mercury compiler can generate either low level
C code that is effectively assembler [8] or high level C code that actu-
ally uses C constructs such as functions, local variables, while loops
and so on [5].

Memoed predicates. The parser has 92 recognition predicates, and we
could memo an arbitrary subset of these predicates. We ran tests with
all recognition predicates memoed, with no predicates memoed, and 92
versions each with a single predicate memoed. Based on preliminary
results, we also selected four versions with two or three interesting
predicates memoed.

None of the Mercury versions had measurable startup times, so we
don’t report them. We also don’t have room to report timing results for
all versions of the Mercury parser, so figure 5 reports only a selection.
(The full set of raw data are available from the Mercury web site, right
next to this paper.) The figures represent user time in seconds; they were
obtained by averaging the times from 22 runs. For each of the ten possible
combinations of backend and input representation, we present times for
three out of the 98 variations along the memoized predicates that we
explored:

best: the best time from all the versions we tested;

11

Parser version Null load Test load Difference

unoptimized 0.56s 7.54s 6.98s
optimized 0.52s 6.92s 6.40s

Fig. 4. Times for Rats! packrat parser

Backend Input Best None memoed All memoed

high level C chars 3.56s 4.60s (1.29, 77th) 14.08s (3.96, 98th)
high level C single 3.38s 4.14s (1.22, 77th) 13.44s (3.98, 98th)
high level C global 1.30s 1.34s (1.03, 16th) 10.63s (8.18, 98th)
high level C pass1 1.35s 1.36s (1.01, 2nd) 10.66s (7.90, 98th)
high level C pass2 1.24s 1.24s (1.00, 2nd) 10.65s (8.59, 98th)

low level C chars 5.01s 5.03s (1.00, 2nd) 16.58s (3.31, 98th)
low level C single 4.76s 5.01s (1.05, 4th) 15.94s (3.35, 98th)
low level C global 1.82s 1.90s (1.04, 65th) 12.89s (7.08, 98th)
low level C pass1 1.87s 1.92s (1.02, 13th) 13.18s (7.05, 98th)
low level C pass2 2.13s 2.29s (1.08, 85th) 13.71s (6.44, 98th)

Fig. 5. Times for Mercury DCG parser

none: the time with no predicates memoed (equivalent to pure recursive
descent parsing);

all: the time with all predicates memoed (equivalent to packrat parsing).

The none and all columns also contain the ratio between the time in
that column and the best time, and its position in the list of all the 98
times along the “memoed predicates” dimension from best to worst.

Rats! emits parser code in Java whereas the Mercury compiler emits
C code (compiled with gcc), which makes this aspect something of an
apples to oranges performance comparison.

The Java compiler we used was build 2.3 of IBM’s J9 suite
(released April 2007). The Mercury compiler we used was version
rotd-2007-08-18; the generated C code was compiled with gcc 3.4.4
(20050314). The test machine was a PC with a 2.4 GHz Pentium IV
CPU with 512 Kb of cache, 512 Mb of main memory, running Linux
kernel version 2.6.8-2.

4.3 Performance Analysis

There are two main kinds of observations we can make about the per-
formance data in figures 4 and 5: comparisons between packrat parsing
using Rats! and memoed DCG parsing using Mercury, and comparisons

12

among the various versions of memoed DCG parsing using Mercury. We
start with the latter.

It is clear from figure 5 that memoing all recognition predicates is
never a good idea. For every combination of the other dimensions (back-
end and input representation), memoing everything was always the worst
possible choice in the “memoed predicates” dimension. The raw data also
shows that it was always worst by a very wide margin. This effect is so
strong that we would be very surprised if memoing everything turned out
not to be the worst choice (from a similar range of possibilities) for any
other grammar.

Figure 5 also shows that memoing nothing, i.e. using a plain recursive
descent parser, is usually quite close to being the optimal choice. In several
cases it is separated from the best choice by less time than the typical
measurement error.

With the low level C backend and using “global” as the input rep-
resentation, the speeds of the best 65 versions are all within 4% of each
other. This shows that for most predicates, memoing just that predicate
and nothing else is likely to have only an insignificant effect. again often
within measurement error. Our raw data confirms that the trend also
holds for the other nine rows of figure 5, though in those the clustering is
slightly looser.

However, there are some predicates whose memoing leads to signif-
icant effects. For example, memoing the recognizer for the punct non-
terminal (whose definition is punct(Punct) --> match_string(Punct),
whitespace) always leads to significant slowdowns. In each row, it leads
to one of the three worst times in that row, the only worse choices
(amongst the ones we tested) being memoing everything and memoing
punct and two other predicates. On the other hand, memoing the recog-
nizer for the modifiers_opt nonterminal almost always lead to speedups;
the version with only this predicate memoed was the fastest version for
four of the ten rows, and was second, third and fifth fastest respectively
in three other rows.

As it happens, the recognizer predicate for punct is called very fre-
quently, but in more than 95% of cases it fails immediately, so a call to the
recognizer typically does very little. On the other hand, modifiers_opt
looks for zero or more occurrences of modifier, which requires looking
for any one of eleven keywords, so even in the typical case where none of
these is present, it requires a nontrivial amount of work to recognize this
fact.

13

punct and modifiers_opt are also at opposite ends of the scale when
it comes to the cost of memoing. modifiers_opt has no input apart
from the current input position, and so (for every one of the input rep-
resentations we tested) checking whether we have already looked for this
nonterminal at this position requires only a single hash table lookup. 1 On
the other hand, punct also has another input, the string to be matched.
Computing the string’s hash value requires scanning it, and comparing
the probe string with a hash slot’s occupant requires scanning it again (at
least in the case of a hit), so the table lookup will take significantly more
than twice as long for punct as for modifiers_opt. (Using the address
of a string as its hash value could speed this up, but Mercury doesn’t yet
support tabling strings by their addresses; we are in the process of fixing
this.)

These observations are a simple consequence of Amdahl’s law [1]. The
effect on performance of memoing a recognizer predicate depends on

1. the fraction of the runtime of the parser that the predicate accounts
for,

2. the ratio of the time taken to execute the recognizer predicate’s body
compared to the time taken to perform the table lookup that could
avoid that execution, and

3. the probability that the table lookup fails, so you have to execute the
predicate body anyway.

The first point is the reason why memoing most predicates doesn’t
have a measurable impact. If a predicate accounts for only a small part of
the execution time, memoing it can’t have more than a small effect either,
in which case not memoing it is better since it does not waste any space (in
memory, or more importantly, in the cache) on the memo table. However,
the key point is the second one: if the table lookup takes at least as long
as executing the predicate body, then memoing will yield a slowdown,
not a speedup, even if almost all lookups are hits. Pure recognizers are
particularly vulnerable to this effect. Adding code to build ASTs and/or
to evaluate semantic predicates to the bodies of nonterminals will reduce
the relative if not the absolute costs of tabling.

Comparing the performance of the Rats!-generated packrat parser in
figure 4 with the performance of the the all-memoed Mercury DCG parser

1 With the pass1 and pass2 input representations, the extra arguments are always
the same, so we specify promise implied to ensure that these arguments are not
memoed. This is OK, since we always reset all tables when switching from one file
to another.

14

in figure 5 is very difficult because the difference between packrat pars-
ing (including all the optimizations applied by Rats!) and memoed DCG
parsing is confounded by other differences, chiefly in how the parsers’ exe-
cutables are generated (Rats! generates Java, whereas Mercury generates
C). If Rats! is ever modified to generate C, or if the Mercury compiler’s
Java backend is ever completed, this confounding factor would be re-
moved.

Grimm reports [4] that the set of 17 optimizations performed by Rats!
(some of which rely on the presence of hand-written annotations) yield a
cumulative speedup of a factor of 8.9. That was on a different machine
and on a different test load, but by nevertheless applying that factor
to the data in figure 4, we can estimate (very roughly) that a totally
unoptimized packrat parser in Java would take 50 to 60 seconds on our
load on our test machine (6.4s ∗ 8.9 = 56.96s). At 16.58 seconds, even
the slowest Mercury DCG parser is significantly faster than that. While
some of this is almost certainly due to the Java vs C difference, part of
it is probably due to differences in how the two systems manage their
tables. Likewise, all ten versions of a plain Mercury DCG parser with
no memoing are much faster than the fully optimized Rats! generated
packrat parser.

The best parser generated by Rats! (the one with all optimizations
applied, which avoids memoing many nonterminals) is a factor of 8.9
faster than the worst Rats! parser (the one with no optimizations applied,
which memoes all nonterminals). In most rows of figure 5, the difference
between the best and worst versions is smaller than that. That tells us
that Rats! is tapping some sources of speedup that we don’t. This is not
surprising, given that section 8 of [4] gives a long list of optimizations that
we haven’t even tried to apply, even though they would be worthwhile.
However, the fact that we get speedups in the factor of 3 to factor of 8
range by simply not memoing anything, and some slight speedups beyond
that by carefully selecting one or two predicates to memo, shows that with
this single optimization (memoing almost nothing) we are also tapping
an important source of speedup that Rats! doesn’t.

Rats! actually has an optimization that reduces the set of memoed
nonterminals, and figure 4 of [4] shows that of the 17 optimizations applied
by Rats, this one gets one of the two biggest speedups (almost a factor of
2). However, our data shows that memoing even fewer nonterminals can
yield even bigger speedups.

We think the Rats! technique of starting off by memoing all nonter-
minals, and then applying heuristics to choose some nonterminals to not

15

be memoed, is approaching the problem from the wrong end. We think
the right approach is to start by memoing nothing, and then applying
heuristics to choose some nonterminals to be memoed. Rats! uses heuris-
tics based on properties of the grammar. We think that while these have
their place, it is much more important to pay attention to Amdahl’s law
and memo a nonterminal only if the expected speedup due to this step is
(a) positive and (b) nontrivial, i.e. likely to be measurable.

The best way to estimate the expected speedup is via feedback from a
profiler that can record the program’s overall execution time, the average
time to execute each nonterminal’s predicate, the average time to table
the arguments of that predicate, and the average hit rate of each table.
In the absence of such feedback, the system can either try to estimate
that information from the structure of the grammar (this approach has
had some success in other contexts, e.g. granularity analysis), or ask the
programmer to annotate the predicates that should be tabled. Running
a few experiments with different sets of annotations doesn’t take very
long (figure 5 is based on several thousand such experiments, all driven
by a single script), and in fact may be less work than annotating all the
“transient” nonterminals in a Rats! parser specification.

Of course, adopting no memoing as the default approach means aban-
doning the linear time guarantee of packrat parsing; with few or no non-
terminals memoed, large chunks of the input may in theory be scanned an
exponential number of times. However, we don’t think this is a problem.
First, as many others have noted [7], exponential behavior just doesn’t
seem to happen in practice anyway. Second, the linear time guarantee al-
ways had problems. Tabling everything consumes main memory at a high
rate, and so risks starting thrashing, thus dropping the program from
DRAM speed to disk speed. While a theoretician may say the perfor-
mance is still linear, that won’t prevent complaints from users. The fact
that many languages nowadays (including Java and Mercury) include a
garbage collector (which must scan the tables at least once in a while,
but won’t be able to recover memory from them) just makes this even
worse. Given these facts, we think that in the absence of a genuine need
for a guaranteed linear upper bound, focusing just on the expected case
makes much more sense.

5 Discussion and Conclusion

The PEGs (parsing expression grammars) that underlie packrat parsers
and DCGs (definite clause grammars) have very similar expressive power.

16

While PEGs usually require support from a specialized tool, DCGs can be
implemented directly in a general purpose programming language. This
brings some advantages, for example the ability to use higher order code
to abstract away common patterns and the ability to use standard tools
such as debuggers and profilers. In this paper, we have shown another
of these advantages, which is that if the host language has support for
memoization, then any DCG parser can be turned into a packrat parser
simply by memoizing the predicates implementing the production rules.
This is by far the simplest way to construct a packrat parser: it uses a
general purpose language feature, it handles the arguments representing
the current offset in the input the same way as any other arguments (such
as those representing a symbol table), and doesn’t even require any new
implementation effort.

However, while it is trivial to turn any DCG parser into a packrat
parser, our data shows that this is almost always a performance loss, not
a win. Our data shows that not memoing any predicates is consistently
much faster than memoing all predicates, and that memoing nothing is
in fact usually pretty close to optimal. While generalizing from a sample
of one (the Java grammar) is always dangerous, we believe this result is
very likely to hold for the grammar of any programming language, since
these tend to have only relatively few ambiguous components. (Gram-
mars for natural languages can be expected to have much more pervasive
ambiguity.) Most predicates don’t contribute significantly to the parser’s
runtime, so tabling them just adds overhead in both space and time. For
memoing to yield a benefit, the memoed predicate must contribute signif-
icantly to the runtime of the parser, and the average running time of one
of its invocations multiplied by the hit rate of the table (the expected sav-
ings), must exceed the time taken by the tabling operations themselves
(the cost). We propose that this be the chief consideration in deciding
what predicates to memo in a recursive descent parser. This considera-
tion is so important that respecting it, and tabling only a minimal set
of predicates (usually only one, sometimes none) leads to a parser that
is significantly faster than the one generated by Rats!, even though the
Rats! applies a whole host of other optimizations we don’t.

The best of both worlds would be a system that respected Amdahl’s
law in choosing what to memo but also applied all the other optimizations
applied by Rats!. Some of them (e.g. factoring out common prefixes that
occur in the conditions of a chain of if-then-elses) are generic enough that
it makes sense to add them to the implementations of general purpose
programming languages such as Mercury. Some (e.g. turning the code

17

that recognizes public | private | protected from a chain of if-then-
elses into a decision tree) are specific to parsers, and thus are appropriate
only for a parser generator. The same is true for Rats!’s support for left-
recursive productions.

References

1. Gene Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the AFIPS Spring Join Computer Con-
ference, pages 483–485, Atlantic City, New Jersey, 1967.

2. B. Ford. Packrat parsing: Simple, powerful, lazy, linear time. In Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Programming,
pages 36–47, Pittsburgh, Pennsylvania, 2002.

3. R. Grimm. Practical packrat parsing. New York University Technical Report, Dept.
of Computer Science, TR2004-854, 2004.

4. R. Grimm. Better extensibility through modular syntax. In Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and Implementation,
pages 38–51, Ottawa, Canada, 2006.

5. Fergus Henderson and Zoltan Somogyi. Compiling Mercury to high-level C code. In
Nigel Horspool, editor, Proceedings of the 2002 International Conference on Com-
piler Construction, Grenoble, France, April 2002. Springer-Verlag.

6. F. Perreira and D. Warren. Definite clause grammars for language analysis — a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

7. R. Redziejowski. Parsing expression grammar as a primitive recursive-descent parser
with backtracking. Fundamenta Informaticae, 79 (1-4):513–524, 2007.

8. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29 (1-3):17–64, 1996.

