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Abstract. The logic programming language Mercury is designed to sup-
port programming in the large. Programmer declarations in conjunction
with powerful compile-time analysis and optimization allow Mercury pro-
grams to be very efficient. The original design of Mercury did not support
constraint logic programming (CLP). This paper describes the extensions
we added to Mercury to support CLP. Unlike similarly motivated exten-
sions to Prolog systems, our objectives included preserving the purity of
Mercury programs as much as possible, as well as avoiding any impact
on the efficiency of non-CLP predicates and functions.

1 Introduction

Constraint logic programming (CLP) [9] is considered the archetypal form
of constraint programming thanks to three properties inherited from logic
programming: its declarativeness, which allows users to state problems
simply and correctly, its relational nature, which suits the definition and
usage of constraints, and its built-in backtracking, which simplifies the
specification of search. However, declarativeness also complicates the im-
plementation of efficient constraint solvers, since this often requires the
use of programming techniques (such as destructive update or control of
the goal execution order) that lack a straightforward declarative reading.

As a result, constraint solvers are often implemented in other (non-
declarative) languages, thus achieving efficiency of constraint solving but
incurring an interface overhead between the modelling language and the
constraint solver. Not only must the solver interface allow constraints to
be passed to the solver, but it must also support memory management
and backtracking. Typically such functionality is not directly provided by
external solvers, making the interface complex and unnecessarily ineffi-
cient. Furthermore, the common need to access internal solver informa-
tion means that the representation of the constraint store and its efficient
but non-declarative manipulation spreads throughout the CLP interface.
Since virtually no CLP languages make a distinction between declarative
and non-declarative code (effectively making all code non-declarative)



CLP is, in practice, less efficient and arguably no cleaner than constraint
programming embedded within a procedural paradigm.

In contrast to CLP, Mercury [12] has explored a different direction
for the logic programming paradigm: that of a purely declarative general
purpose language designed to support well-engineered, efficient, large pro-
grams. This is achieved by including an effective module system, strong,
expressive, and statically checked type, mode, and determinism systems,
clear separation between declarative and non-declarative code, and ex-
tensive compiler optimizations.

The above characteristics make Mercury an excellent candidate for
achieving our objective: to design and implement a CLP platform that
retains the advantages of CLP without compromising on programming
style, efficiency, or scalability. This objective is similar to that driving
the design of the HAL language [3], which compiled to Mercury, adopted
its module, type, mode, and determinism systems, and extended them
to support solvers. We chose instead to extend Mercury to become itself
a CLP language. Our reasons for doing this were basically software en-
gineering reasons: the HAL compiler duplicates much of the work done
by the Mercury compiler and generates Mercury code. It is significantly
simpler and more efficient to have all this work done under one roof.

Our extension of Mercury builds on some of the authors’ positive and
negative experiences building and using HAL. Indeed, while the main
change required to support constraint solving in Mercury (an extension
to the mode system to allow constrained variables, as described in section
3.1) was done to support HAL’s generation of Mercury code, the design
of several key issues in this paper, such as the handling of solver types
and solver interfaces, is improved significantly compared with HAL. We
believe these changes extend Mercury’s support for constraint program-
ming a significant step further, making it a clean declarative language for
implementing efficient constraint solvers.

Our main contribution in this paper is a new design for solver types
that provides a clean separation between the viewpoint of the solver user
(the external view) which sees them as traditional solver variables, and
the viewpoint of the solver implementor (the internal view) which sees
them as data structures used to access the information required by the
external view. Our extension supports this duality through the use of two
different types with different instantiation states, linked together by a
new solver type declaration. Several “solver interface cast” functions are
automatically generated from this solver type declaration to allow easy
conversion from one type and instantiation state to the others.
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The two different types and instantiation states make it easier for
solver implementors to provide a purely declarative interface to users,
while still using imperative techniques. Thus, only solver implementors
need to peek below the “purity” hood. This solution is not only semanti-
cally cleaner than that used in HAL, but also more powerful.

The rest of the paper is organized as follows. Section 2 introduces
the necessary background. Section 3 describes the changes required to
allow Mercury programs to use solvers written in other languages, while
Section 4 describes the features we added to allow solvers to be written in
Mercury itself, possibly as hybrid solvers written on top of other solvers.
The last section provides comparisons to related work.

2 Background

While the syntax of Mercury is based on the syntax of Prolog, seman-
tically the two languages are very different due to Mercury’s purity; its
type, mode, determinism and module systems; and its support for evalu-
able functions. Mercury has a strong Hindley-Milner type system very
similar to Haskell’s. Mercury programs are statically typed; the compiler
knows the type of every argument of every predicate (from declarations
or inference) and every local variable (from inference).

The initial version of the mode system classified each predicate argu-
ment as either input or output. If input, the argument passed by the caller
must be a ground term; if output, the argument passed by the caller must
be a distinct free variable, which the predicate or function will instantiate
to a ground term. The extensions we describe later in this paper intro-
duce other instantiation states and modes. It is possible for a predicate
or function to have more than one mode; the usual example is append,
which has two principal modes: append(in,in,out) and append(out,out,in).
We call each mode of a predicate or function a procedure. Each procedure
has a determinism, which puts limits on the number of its possible so-
lutions. Procedures with determinism det succeed exactly once; semidet

procedures succeed at most once; multi procedures succeed at least once;
while nondet procedures may succeed any number of times.

2.1 Foreign code and purity

Mercury supports access to code written in other languages by allowing
the implementation of a Mercury predicate or function to be given in one
of the languages supported by the Mercury compiler. On Unix systems,
that means C; when generating code for .NET, it means C# or managed
C++. For example, the syntax for defining a function sin/1 in C is:
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:- func sin(float) = float.
:- pragma foreign proc(“C”, sin(X::in) = (Result::out), [promise pure],

“Result = sin(X);”).

The arguments of the foreign proc pragma give the language of the
code, the name of the predicate or function together with its arguments
and their modes, a list of attributes, and the foreign code itself. The
promise pure attribute is part of the Mercury purity system, which clas-
sifies every predicate into one of the following three categories:

pure — the predicate is referentially transparent: the set of values it
computes for its output arguments is completely determined by the
values of the input arguments. Calls to such predicates may be opti-
mized away or reordered freely.

impure — the predicate is not referentially transparent: the set of values
it computes for its output arguments may depend on the current state
of the computation in an arbitrary way. The execution of a call to an
impure predicate may affect the behavior of future calls to impure and
semipure predicates in an arbitrary manner. Calls to such predicates
cannot be optimized away or reordered.

semipure — again, the predicate is not referentially transparent. How-
ever, the execution of a call to a semipure predicate cannot affect the
behavior of future calls to impure and semipure predicates. Calls to
such predicates can be optimized away or reordered only within the
fenceposts formed by the surrounding impure calls.

Thus, predicates that write (and possibly read) state beyond their ar-
guments are impure, while those that read but do not write are semipure:

:- semipure pred get global(globaltype::out) is det.
:- pragma foreign proc(“C”, get global(X::out), [promise semipure],

“X = some global variable;”).
:- impure pred set global(globaltype::in) is det.
:- pragma foreign proc(“C”, set global(X::in), [],

“some global variable = X;”).

Mercury allows programs to use impure code to implement a pure in-
terface. Non-pure calls must be marked, and the user must promise that
the predicate at the interface behaves as a pure predicate (i.e., its outputs
depend only on its inputs). One example is the solutions predicate, which
returns all solutions of a given goal as a sorted list. While this interface is
purely declarative, the implementation of solutions uses a failure-driven
loop patterned after Prolog’s findall. After every success of the given goal,
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it saves the solution in a global variable and backtracks; when the goal has
no more solutions, it picks up the list of recorded solutions from the global
variable, sorts them and returns the result. This code is clearly impure,
but the effect of this impurity is not visible outside solutions, because
no other part of the system looks at that global variable. While predi-
cates implemented in foreign languages are impure by default, Mercury
predicates are pure unless they call semipure or impure predicates.

2.2 Type-specific representation and equality

Since all types are known at compile time, term representation is special-
ized for each type. A given bit pattern may thus mean one term if it rep-
resents a value of type t1, and another for a value of type t2. The generic
unify and compare predicates take an extra input describing the type of
the arguments, which is used to invoke the specific unify or compare pred-
icate for that type. These type-specific unify and compare predicates are
usually created automatically by the compiler from the type definition,
but programmers are allowed to define their own unify and/or compare
predicates. For Mercury types defined in foreign languages, this is the
only way unification and comparison can be defined. Additionally, this
can also be useful for Mercury types on which semantic equality differs
from structural equality, as it is the case when using unordered lists that
may contain duplicates to represent sets. The type declaration:

:- type set unordlist(T) −→ unord(list(T))
where equality is sort elimdups and unify,

comparison is sort elimdups and compare.

specifies that for values of type set unordlist(T), where T can be any
type, unification should be defined by the sort elimdups and unify predi-
cate. User-defined equality imposes a proof obligation on the programmer,
who must ensure that the equality predicate satisfies the usual properties
of reflexivity, transitivity, commutativity and, most importantly, equiva-
lence under replacement of equal objects. In other words, given A = B, it
should be possible to substitute B for A in any call in the program without
changing the call’s results, with the exception of calls to semipure and
impure predicates, which are known not to be referentially transparent
[6].

3 Interfacing to external solvers

The easiest way to add constraint solving capability to a Mercury program
is to provide an interface to an existing solver such as CPLEX [2] written
in a foreign language. The natural way to do this is to create a module that
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exports the operations of the external solver together with an abstract
type representing the variables that participate in the constraints. This
requires an extension of the mode system, an extension that is also needed
for writing solvers entirely in Mercury, as we will discuss in section 4.

3.1 New versus old variables

The standard version of the Mercury mode system requires the com-
piler to know exactly which goal binds each variable. This is inherently
impossible to achieve in constraint programs since, given a sequence of
constraints, the particular constraint that fixes the value of a variable
is frequently data dependent. We therefore added an instantiation state
called old which indicates the variable is known to a solver and thus may
be constrained, but it is not known whether it is ground. For example, a
finite domain variable might be known to be greater than 3 and smaller
than 7 (thus, it is not free), but its exact value might not be known yet
(thus, it is not semantically ground either).

All variables start life in instantiation state new. For ordinary variables
life is simple: at some point known to the compiler they become ground.
For variables that occur in constraints, things are a bit more complex.
When they first become known to their constraint solver (at a point known
to the compiler) they change from new to old. Their instantiation state
stays old as more constraints are added to them, unless they participate in
an operation that is known to fix their value, in which case they become
ground. However, most constrained variables die old.

The predicate or function that first makes a variable known to a solver
takes that variable from instantiation state new to old (referred to as ar-
gument mode no, after their initials). In most cases, this is a specialized
initialization predicate that does nothing else. Usually, solver operations
work only on variables that have already been initialized, so they take
solver variables from instantiation state old to old, which we abbreviate
as argument mode oo. In some solvers, adding a constraint can be more
efficient if some of its variables are known not to have previous constraints
on them. In such cases, the solver may export operations that both ini-
tialize a variable and put a constraint on it. For example, a function like
addition (+) on a constrained float type cfloat may be declared as

:- pred cfloat + cfloat = cfloat.
:- mode oo + oo = no is det.

The set of things user programs can do with old variables is restricted
to passing them around, putting them into data structures, and calling

6



the operations of their solver module. (This is enforced by the defini-
tion of their type being visible only in the solver module; they are not
distinguished syntactically from other variables.) Since the concrete rep-
resentation of old variables is usually just an index into the constraint
store, unifying them with a term or with another variable using Mer-
cury’s usual structural equality is not meaningful. Solver programmers
must avoid this unsoundness by defining type-specific equality predicates
for the types of constrained variables.

3.2 Tell versus ask goals

Solver operations can usually be divided into two classes, tells and asks

(some operations are both). While tell operations add new constraints
to the store, ask operations inspect the store, usually to decide whether
a constraint is entailed by it or not. Thus, tell operations are usually
semidet, since they might find the resulting store to be inconsistent. It
is also possible for a tell operation to be det if it works with fresh (new)
variables, as in the addition example above.

Tell operations can be (and usually are) pure. Even though their im-
plementation includes side-effects (updates to the global constraint store),
these are not visible to the solver user as long as the solver ensures the
operations are order-independent, i.e., the consistency or inconsistency of
the store does not depend on the order in which constraints are added.
Consider the Herbrand constraint solver built into every Prolog system.
A unification is a tell operation which adds a new Herbrand constraint
to the store, and it is implemented via side-effects such as making one
variable point to another. Nevertheless, from the user’s point of view, the
solver maintains referential transparency and is thus pure.

Unfortunately, tell constraints can cause problems when appearing in
a negated context, i.e., in the body of a negation or in the condition of
an if-then-else (if C then T else E is semantically equivalent to (C ∧ T ) ∨
(¬∃C∧E)). This is because tell constraints often have arguments of mode
oo, and Mercury cannot decide whether these arguments become further
constrained by the tell. If they are, this is unsound since the negated goal
binds variables visible from the outside. This can, for example, destroy
the commutativity of conjunction: if X and Y are initially unconstrained,
then executing X ≥ Y, not(X < Y) should succeed, whereas not(X < Y),
X ≥ Y would fail (X < Y would succeed after constraining X and Y,
so its negation would fail). Tell constraints occuring in negated contexts
should be translated to ask constraints (see e.g. [4]). Our current solution
is to implicitly make impure any goal occurring in a negated context that
contains a nonlocal variable with inst old. In these cases, it is up to the
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programmer to decide whether such goals really are pure and add a purity
promise if they are.

The result of executing an ask constraint depends upon the state of the
constraint store, and thus upon when it is executed. Whereas tell goals can
be reordered arbitrarily with respect to each other, ask goals should not
be reordered with respect to tell goals. Furthermore, since some ask goals
also change the constraint store, they should not be reordered with respect
to other ask goals either. The simplest way to achieve this is to make them
impure. This is also semantically desirable, since the undisciplined use of
ask goals can break referential transparency. Consider the ask constraint
fixed(X) which succeeds if solver variable X is fixed to a unique value. The
goals fixed(X), X = 3 and X = 3, fixed(X) would have different behaviour.

4 Writing constraint solvers in Mercury

We want to allow programmers to write solvers directly in Mercury, either
from scratch, or using other solvers. This requires significant additional
changes to the language.

4.1 Solver types

Solver users see constrained variables as black boxes whose implementa-
tion is hidden, and which spend most of their life in instantiation state
old. Solver writers, on the other hand, must know the constraint variable’s
structure and must be able to manipulate it. For efficiency, this usually
requires constraint variables to have a more concrete instantiation state
such as ground. While the notion of abstract data types can be used to
provide the user’s view, we need a new mechanism, which we call solver

types, to support the solver writer’s view.
Solver types are for variables whose values may have constraints placed

on them. Solver types are exported abstractly, i.e., their definition stays
hidden and the only operations users can invoke on their values are those
exported by the solver module. The following provides the module inter-
face of the solver we will use as our running example:

:- solver type po vertex.
:- pred init(po vertex::no) is det.
:- pred eq(po vertex::oo, po vertex::oo) is semidet.
:- pred ’<’(po vertex::oo, po vertex::oo) is semidet.
:- pred ’≤’(po vertex::oo, po vertex::oo) is semidet.
:- impure pred order(list(po vertex)::in, list(po vertex)::out) is semidet.

The first line declares po vertex to be an abstract solver type, while
the other lines declare the operations available on it. The init predicate
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creates a fresh variable of the solver type; eq, <, and ≤ each tell the solver
to impose the constraint they stand for; and order asks for a total order
consistent with the partial order required by the constraints imposed so
far, using the supplied order as a preference to break any ties.

The implementation section of the solver module defines some auxil-
iary types (vertex is a type synonym for integers, and constraint is a type
with data constructors, lt for less-than constraints and le for less-than-
or-equal-to constraints), and then gives the actual definition of the solver
type as follows:

:- type vertex == int.
:- type constraint −→ lt(vertex, vertex) ; le(vertex, vertex).

:- solver type po vertex where
representation is vertex,
equality is eq,
initialisation is init,
constraint store is

[ mutable(counter, int, 0),
mutable(constraints, set(constraint), empty set) ].

The following subsections explain the various parts of this declaration.

4.2 The external and internal views of solver types

A solver type presents the “external” view of a constrained variable, which
is the only view available to its users. Every solver type also has an
underlying representation type, which presents the “internal” view visible
only to the solver implementation. This representation type is specified
by the representation is vertex part of the declaration.

In our example, a constrained variable of solver type po vertex is rep-
resented by a variable of type vertex, which is just a synonym for integer.
These two types are semantically quite different. Equating two values of
type vertex simply requires testing whether two integers are the same,
while equating two values of type po vertex requires adding a new eq con-
straint to the store and testing its consistency. For instance, let V1 and V2

be two currently unconstrained variables of type po vertex with internal
representations 42 and 69, respectively. While V1 = V2 should succeed,
constraining the two solver variables to behave identically with respect
to all other solver operations, 42 = 69 should fail.

We can distinguish between these two kinds of equality thanks to
Mercury’s support for user-defined equality. The “equality is eq” part of
the declaration indicates to Mercury that equality for values of solver
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type po vertex is defined by the eq predicate, rather than by the default
structural equality relation. (The Mercury compiler and runtime system
together implement the unification V1 = V2 in the previous paragraph by
calling eq(V1, V2).) Values of the internal type vertex, on the other hand,
will use the standard equality definition for integers. This separation into
two types allows solver writers to ensure the referential transparency of
exported predicates and functions, something that must be done by any
declarative language with true programmer defined equality. 1

Separating the external, solver type from the internal, representation
type also allows their treatment to differ in other respects, such as making
just one of them an instance of a type class, or providing different im-
plementations for the methods of a type class. For example, consider an
overloaded predicate show for pretty-printing. Applying show to a vertex
should simply print an integer (since a vertex is an integer), but showing
a po vertex could, for instance, list the constraints on the vertex.

4.3 Converting between internal and external views

We need to provide ways of moving from the external type with its exter-
nal instantiation state (old) to the internal type with its internal instanti-
ation state (usually ground, but see section 4.6), and vice versa. The solver
type declaration allows the Mercury compiler to automatically create the
two casting functions required by the solver writer to do this. For our
running example, these functions are:

:- impure func from old po vertex(po vertex::oo) = (vertex::out).
:- impure func to old po vertex(vertex::in) = (po vertex::no).

where from old po vertex takes an old po vertex value and returns its inter-
nal ground vertex representation, while the dual function to old po vertex
takes a ground vertex value and returns the corresponding old po vertex.
Note that by default, internal representations are ground values. This can
be overridden in the solver type declaration if, for example, the internal
representation is defined in terms of another solver type.

The casting functions are impure because a semantically non-ground
value of the external type may be (and typically is) represented by a
ground value of the internal type. No declarative reading can be given to
such a relationship. While the value of the external type may be further
constrained, this does not affect the already ground value of the internal

1 Languages like Haskell sidestep the same problem by treating the (possibly user-
defined) equality relation == as having no relation to the equality = used for refer-
ential transparency. This is not possible in a relational language due to the pervasive,
implicit use of equality.
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type. In the internal view, this is usually reflected only in the constraint
store, which is not an argument to the casting functions.

Operationally, cast functions are just the identity function. Calls to
these functions are guaranteed to be optimized away, and thus have no
performance cost. They exist only to bridge the “semantic gap” between
a solver type and its internal representation.

4.4 The constraint store

The value of a solver variable cannot be understood in isolation from the
constraint store of its solver. The

constraint store is
[ mutable(counter, int, 0),
mutable(constraints, set(constraint), empty set) ].

part of the declaration indicates that the constraint store for the po vertex
type is stored in two mutable global variables, one containing the id of
the next vertex to be allocated (each new vertex is given a different in-
teger identifier), the other containing the set of constraints in the store.
In this case, the store may contain only lt and le constraints (this exam-
ple represents equality constraints as a pair of le constraints). Initially
no vertexes have been created and the set of constraints is empty. More
complex solvers would have more sophisticated data structures.

The Mercury compiler automatically creates two access predicates for
each mutable variable, which in this case will have the signatures

:- semipure pred get counter(int::out) is det.
:- impure pred set counter(int::in) is det.
:- semipure pred get constraints(set(constraint)::out) is det.
:- impure pred set constraints(set(constraint)::in) is det.

Exported solver predicates start by reading (parts of) the store from these
global variables and finish by updating them, if necessary. Updates to the
global variables are trailed to ensure they are automatically undone on
backtracking.

4.5 Solver operations

The functionality of the solver derives from the functions and predicates
that it exports. In practice, this is where the bulk of the solver code lies.
This code uses predicates and functions created by the compiler from
solver type declarations to map the external types and instantiations to
internal ones and vice versa, and to lookup and modify information in
the global solver state. For example, the less-than-or-equal-to constraint
listed in the solver type interface might be defined as in figure 1.
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A ≤ B :-
promise pure(

impure X = from old po vertex(A),
impure Y = from old po vertex(B),
semipure get constraints(Arcs0),
( if path(X, Y, Arcs0, )
then true
else not path(Y, X, Arcs0, strict),

Arcs = set.insert(Arcs0 , le(X, Y)),
impure set constraints(Arcs)

)
).

Fig. 1. The code of the predicate that adds a less-than constraint

If there is an existing path from X to Y in the constraint graph, then the
constraint X ≤ Y is already entailed and we return. (The path predicate
looks for acyclic paths in Arcs0, and tracks whether the path traverses
a strict constraint or not.) Otherwise, if there is an existing strict path
from Y to X (implying Y < X), then we fail, since the constraint X ≤ Y
is inconsistent with the current constraint graph. Otherwise we add le(X,
Y) to the constraint graph and update the global constraint store.

4.6 Hybrid solvers

It is also possible to define a new solver type in terms of other solver
types. Figure 2 shows how a lexicographically ordered solver type could
be defined in terms of the po vertex solver (this example is purely illus-
trative: in practice a user of the po vertex type would just use a pair of
po vertexes directly rather than hiding the representation behind another
solver type). The solver type declaration contains an extra attribute, any
is bound(lex rep(old, old)), which specifies that the instantiation state of
the representation type that corresponds to the inst old of the external
type is not ground, but rather the function symbol lex rep wrapped around
two old values.

5 Related work

Mercury’s focus on purity while not neglecting efficiency (quite the con-
trary!) leaves very few directly competing logic programming languages.
The closest relative is HAL [3], which itself used Mercury as an imple-
mentation language. The vast bulk of other logic programming systems
supporting the implementation of constraint solvers can reasonably be
described as Prolog extensions (e.g. [1, 5, 7, 11]). Oz [10] supports con-
straint programming, but any new constraint solvers have be written in
a foreign language (C++).
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:- solver type lex where
representation is lex rep,
any is bound(lex rep(old, old)),
equality is eq lex,
initialisation is init lex.

:- type lex rep −→ lex rep(po vertex, po vertex).

:- pred init lex(lex::no) is det.
init lex(A) :-

promise pure(
init(A1), init(A2), impure A = to old lex(lex rep(A1, A2))

).

:- pred eq lex(lex::oo, lex::oo) is semidet.
eq lex(A, B) :-

promise pure(
impure lex rep(A1, A2) = from old lex(A),
impure lex rep(B1, B2) = from old lex(B),
A1 = B1, A2 = B2

).

:- pred ’≤’(lex::oo, lex::oo) is nondet.
A ≤ B :-

promise pure(
impure lex rep(A1, A2) = from old lex(A),
impure lex rep(B1, B2) = from old lex(B),
( A1 < B1 ; A1 = B1, A2 ≤ B2 )

).

Fig. 2. Defining a solver type in terms of another solver type

5.1 Prolog-based systems

Key characteristics of Prolog-based systems are a dynamic type system,
no mode checking, support for aliasing of all variables, and dependence on
impure language features while lacking any mechanism for distinguishing
pure code from impure code. The lack of a static type system means that
program variables all have the same “universal type”. Even in systems
with optional type declarations, such as CIAO [7], the compiler cannot
optimize the representation of a term to its type without breaking the
assumptions of e.g. the debugger and the garbage collector. The compiler
therefore cannot optimize the representation of solver types either. Be-
cause the absence of a mode system allows variables to become aliased
before they become ground, every variable must be initialised before use.
It also means that every time the system wants to look up the value of a
variable, it needs to be prepared to follow a chain of aliasing pointers first.
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These characteristics make it very difficult to build fast Prolog systems
(e.g. implementors must write program analyses if they wants to optimize
away dereferencing). Prolog systems that have been extended to support
constraint programming typically use attributed variables [8] to associate
solvers with variables. This complicates the representation of variables
even further, and makes unification more complex and expensive due to
the need to check at many steps whether any attributed solver goals have
to be invoked. However, the biggest drawback of building constraints on
top of attributed variables is that code built that way has no clear, well-
defined boundary between the pure external view and the internal impure
view, which makes programs harder to maintain and to optimize.

The Mercury compiler, by contrast, knows the type of every vari-
able, and each type has a separately optimized low-level representation.
Thanks to the mode system, the Mercury compiler also knows at each
point whether a given variable is new, old, or ground. Consequently, new
variables may contain just junk data, and do not require any kind of ini-
tialization. Only solver type variables need to be initialized, at the point
where their instantiation state changes from new to old (or to ground).
Because new Mercury variables cannot be aliased (Mercury uses code re-
ordering to ensure that at least one side of a unification is old or ground
before the unification is carried out), variables do not need to be deref-
erenced. A particular solver might use aliasing as part of its implemen-
tation of equality, but that is an implementation decision made by the
solver programmer and can have no effect on the performance of vari-
ables with other types, which have separate representations. For exam-
ple, a Herbrand solver type for terms with Prolog-style unification could
use a WAM-style [13] representation, where variables may be aliased and
would therefore need dereferencing. On the other hand, a solver type in-
terfacing to a SAT solver might unify variables by simply adding clauses
equating the two variables to its constraint store. Similarly, because solver
variables are handled exclusively by solver implementations, solvers can
immediately inspect their variables’ values. There is no need for a gen-
eral attribute variable mechanism, and thus no overhead is incurred by
non-solver types.

Mercury also gets additional speed from the Mercury compiler’s abil-
ity to optimize away some computations and to reorder some others (e.g.
to make failure happen earlier). The Mercury compiler is allowed to ex-
ercise this ability only on pure code; removing or reordering impure code
could change the program’s output. Mercury programmers often write
clear, maintainable code, even if it is inefficient, if they know the compiler
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can eliminate the inefficiency. Our solver type design allows and indeed
encourages solver writers to keep both solver interfaces and the codes of
the solvers themselves as pure as possible, and requires them to cleanly
separate out the impure code. This preserves maximum freedom for the
compiler and allows programmers to maintain a declarative programming
style. This has genuine advantages for both compiler implementors (opti-
mizations are easier to implement) and constraint programmers (declar-
ative code is more maintainable). These are real advantages not available
with Prolog-based approaches.

5.2 HAL

Like Mercury, HAL also has external and internal views of solver types.
But rather than making these genuinely distinct types, the external view
is a specially handled renaming of the solver type representation. Outside
the solver module, a HAL solver type is an abstract type whose values
typically have instantiation state old and whose equality is defined by a
programmer specified predicate in the solver module. Inside the solver
module, the solver type is a concrete type, values of that type have a
different instantiation state (usually ground), and the applicable equality
semantics is structural equality rather than the equality predicate used
for the external view.

The first problem with this approach is that referential transparency
is much more complicated for solver types, since what equality means
for such terms is different depending upon whether a unification occurs
inside or outside the solver module. This means for example that code
performing such unifications must not be subject to intermodule opti-
mizations such as inlining. The second is that the solver type module
cannot define predicates in terms of the external view. For example, in
the Mercury po vertex solver module the programmer can define equality
of po vertexes in terms of ≤ for po vertexes:

eq(A, B) :- A ≤ B, B ≤ A.

In a HAL solver module, however, A and B would be viewed as integers
(the representation view), hence the integer version of ≤ would be used
instead of the po vertex version, which has quite different properties! To
see the third problem, consider a showable class the debugger may use to
print values. We would like different things printed in the internal and
the external views, but with the HAL approach, this is not possible, since
there is only one type.

The Mercury approach avoids these problems by making the external
and internal views distinct types and requiring the programmer to ex-
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Problem Size Reps Mercury HAL Eclipse

serialize 10,000 2,000 63.5 98.9 (1.56) 164.9 (2.60)
7,500 3,000 68.4 96.5 (1.41) 180.1 (2.63)
5,000 4,000 58.8 69.0 (1.17) 152.6 (2.60)

warplan 100 8.8 8.2 (0.93) 12.0 (1.36)

hanoi 10 20,000 15.2 17.3 (1.14) 31.7 (2.09)
13 2,000 12.5 18.6 (1.48) 25.5 (2.04)
16 200 10.8 18.5 (1.72) 31.9 (2.95)

qsort 10,000 200 45.9 55.4 (1.21) 221.5 (4.83)
7,500 400 52.5 63.2 (1.21) 241.2 (4.59)
5,000 800 48.7 58.4 (1.20) 204.9 (4.21)

laplace 10 6,000 28.1 32.2 (1.15) 72.7 (2.59)
20 400 20.0 32.7 (1.64) 47.8 (2.39)
30 50 15.9 33.3 (2.01) 37.7 (2.37)

matmul 10 2,000 12.2 37.4 (3.07) 60.9 (4.99)
20 200 14.8 33.5 (2.26) 52.1 (3.52)
30 40 14.3 38.3 (2.68) 42.6 (2.98)

mortgage 1,000 26.9 19.4 (0.72) 1140.0 (42.0)

fib 12 1,000 104.9 100.1 (0.95) 1667.3 (15.9)

Table 1. Benchmark results.

plicitly cast between them. We feel the modest amount of extra typing
required is more than compensated for by the increased flexibility, clarity,
and protection from errors.

6 Experimental evaluation

The results presented here are solely presented to illustrate that the Mer-
cury approach can be used to implement competitive solvers. The bench-
mark programs for each language are as similar as possible, although
the solver type implementations are obviously different in each case. It
is important to bear in mind that the performance of a given solver is
determined much more by how it is implemented than in what language:
the better algorithm will usually win! Using the exact same algorithm on
all systems usually isn’t feasible, and even when it is, a given algorithm
may be a better fit for one system than for another. This is why despite
our best efforts, the benchmarks here are far from being apples-to-apples
comparisons. That said, it seems clear that Mercury is generally faster
than HAL and Eclipse.

These benchmarks were run on a PC with dual 933MHz Pentium III
CPUs and 2 GBytes of RAM running Linux kernel version 2.4.3. All times
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are given in seconds and performance relative to Mercury is also given
in parentheses for all other benchmark times. The compiler versions used
were Mercury rotd-2005-08-21, the last development release of the HAL
compiler (work on HAL ceased in 2004), and Eclipse 5.8. The CPLEX
benchmarks were linked against CPLEX 7.0.

Table 1 gives the results. serialize, warplan, hanoi, and qsort are stan-
dard Prolog benchmarks to test performance on Herbrand constraints,
i.e. Prolog-style unification. HAL’s superior performance on warplan, the
most challenging of this group of benchmarks, reflects the considerable
effort expended by the HAL team on efficient Herbrand types.

laplace, matmul, fib, and mortgage test solver interfaces to CPLEX [2],
an off-the-shelf linear constraint optimizer. laplace computes a matrix
using Laplace’s equation. matmul inverts a matrix of prime numbers by
multiplying it with a matrix of variables and equating the result with
the unit matrix. mortgage computes mortgage costs on a $120,000 dollar
loan over 120 years at 1% interest and then runs the same computation
backwards. fib takes a naive approach to computing Fibonacci numbers in
the forward direction. In laplace and matmul, constraints are “batched”
together and solved once at the end of the query. In mortgage and fib,
constraints are incrementally checked for consistency because they control
recursive loops. We believe HAL’s superior performance on these two
benchmarks is due simply to the fact we haven’t had as much time to
optimize this part of Mercury’s interface to CPLEX.

7 Conclusions

We have extended Mercury with the instantiation old and solver types.
When we began this work, we thought supporting solver types would be
a straightforward and relatively uninteresting design problem. In the end
it required several attempts and a great deal of careful thought to arrive
at a clean design that could be implemented efficiently without sacrificing
referential transparency.

So far, we have used these new Mercury features to implement a Her-
brand solver, a propagation based finite domain solver, and a BDD-based
set solver, as well as interfaces to CPLEX and SATZ (a SAT solver). We
have found the solver type mechanisms to be easy to use, and in each
case, the interface of the solver seen by its users is totally pure, with the
exception of ask predicates.

We have evaluated the performance of some of the above solvers
against comparable solvers in other languages. The results are very en-
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couraging: in the benchmarks we have run, Mercury is the fastest system
in almost all cases.

The system we have described is now available in releases-of-the-day
from the Mercury web site. The full source code of our running example
is also available from there, next to this paper on the papers page.

We would like to thank Fergus Henderson for many useful discussions,
and NICTA and the Australian Research Council for their support.
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