
Tabling in Mercury: Design and Implementation

Zoltan Somogyi1 and Konstantinos Sagonas2

1 NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering, University of Melbourne, Australia

2 Department of Information Technology, Uppsala University, Sweden
zs@csse.unimelb.edu.au kostis@it.uu.se

Abstract. For any LP system, tabling can be quite handy in a variety of tasks,
especially if it is efficiently implemented and fully integrated in the language. Im-
plementing tabling in Mercury poses special challenges forseveral reasons. First,
Mercury is both semantically and culturally quite different from Prolog. While
decreeing that tabled predicates must not include cuts is acceptable in a Prolog
system, it is not acceptable in Mercury, since if-then-elses and existential quantifi-
cation have sound semantics for stratified programs and are used very frequently
both by programmers and by the compiler. The Mercury implementation thus has
no option but to handle interactions of tabling with Mercury’s language features
safely. Second, the Mercury implementation is vastly different from the WAM,
and many of the differences (e.g. the absence of a trail) havesignificant impact
on the implementation of tabling. In this paper, we describehow we adapted the
copying approach to tabling to implement tabling in Mercury.

1 Introduction

By now, it is widely recognized that tabling adds power to logic programming. By
avoiding repeated subcomputations, it often significantlyimproves the performance of
applications, and by terminating more often it allows for a more natural and declar-
ative style of programming. As a result, many Prolog systems(e.g., XSB, YAP, and
B-Prolog) nowadays offer some form of tabling. Mercury is a language with an effi-
cient implementation and comes with a module and a strong type system that ease the
development of industrial-scale applications. Like Prolog systems with tabling, Mer-
cury aims to encourage a more declarative style of programming than “plain” Prolog.
This paper discusses implementation aspects of adding tabling to Mercury.

When deciding which tabling mechanism to adopt, an implementor is faced with
several choices. Linear tabling strategies [11, 3] are relatively easy to implement (at
least for Prolog), but they are also relatively ad hoc and often perform recomputation.
Tabled resolution strategies such as OLDT [9] and SLG [1] areguaranteed to avoid
recomputation, but their implementation is challenging because they require the intro-
duction of a suspension/resumption mechanism into the basic execution engine.

In the framework of the WAM [10], currently there are two maintechniques to im-
plement suspension/resumption. The one employed both in XSB and in YAP [5], that of
the SLG-WAM [6], implements suspension viastack freezingand resumption using an
extended trail mechanism called theforward trail. The SLG-WAM mechanism relies

heavily on features specific to the WAM, and imposes a small but non-negligible over-
head onall programs, not just the ones which use tabling. The other mainmechanism,
CAT [2], completely avoids this overhead; it leaves the WAM stacks unchanged and im-
plements suspension/resumption by incrementally saving and restoring the WAM areas
that proper tabling execution needs to preserve in order to avoid recomputation.

For Mercury, we chose to base tabling on SLG resolution. We decided to restrict the
implementation to the subset of SLG that handles stratified programs. We chose CAT
as implementation platform, because the alternatives conflict with basic assumptions
of the Mercury implementation. For example, Mercury has no trail to freeze, let alone
a forward one, and freezing the stackà la SLG-WAM breaks Mercury’s invariant that
calls to deterministic predicates leave the stack unchanged. CAT is simply the tabling
mechanism requiring the fewest, most isolated changes to the Mercury implementation.
This has the additional benefit that it allows us to set up the system to minimize the
impact of tabling on the performance of program components that do not use tabling;
given an appropriate static analysis, the overhead can be completely eliminated.

This paper documents the implementation of tabling in Mercury (we actually aim
to compute a specific minimal model of stratified programs: the perfect model). We
describe how we adapted the CAT (Copying Approach to Tabling) mechanism to a dif-
ferent implementation technology, one which is closer to the execution model of con-
ventional languages than the WAM, and present the additional optimizations that can be
performed when tabling is introduced in such an environment. Finally, we mention how
we ensure the safety of tabling’s interactions with Mercury’s if-then-else and existential
quantification, constructs that would require the use of cutin Prolog.

The next section reviews Mercury and its implementation. Section 3 introduces
tabling in Mercury, followed by the paper’s main section (Section 4) which describes the
implementation of tabling in detail. A brief performance comparison with other Prolog
systems with tabling implementations based on SLG resolution appears in Section 5.

2 A Brief Introduction to Mercury

Mercury is a pure logic programming language intended for the creation of large, fast,
reliable programs. While the syntax of Mercury is based on the syntax of Prolog, se-
mantically the two languages are very different due to Mercury’s purity, its type, mode,
determinism and module systems, and its support for evaluable functions. Mercury has
a strong Hindley-Milner type system very similar to Haskell’s. Mercury programs are
statically typed; the compiler knows the type of every argument of every predicate (from
declarations or inference) and every local variable (from inference).

The mode system classifies each argument of each predicate aseither input or out-
put; there are exceptions, but they are not relevant to this paper. If input, the argument
passed by the caller must be a ground term. If output, the argument passed by the caller
must be a distinct free variable, which the predicate or function will instantiate to a
ground term. It is possible for a predicate or function to have more than one mode;
the usual example isappend, which has two principal modes:append(in,in,out)
andappend(out,out,in). We call each mode of a predicate or function aproce-
dure. The Mercury compiler generates different code for different procedures, even
if they represent different modes of the same predicate or function. Each procedure

has a determinism, which puts limits on the number of its possible solutions. Proce-
dures with determinismdetsucceed exactly once;semidetprocedures succeed at most
once;multi procedures succeed at least once; whilenondetprocedures may succeed
any number of times. A complete description of the Mercury language can be found at
http://www.cs.mu.oz.au/research/mercury/information/doc-latest/mercury ref.

The Mercury implementationThe front end of the Mercury compiler performs type
checking, mode checking and determinism analysis. Programs without any errors are
then subject to program analyses and transformations (suchas the one being presented
in Section 4) before being passed on to a backend for code generation.

The Mercury compiler has several backends. So far, tabling is implemented only for
the original backend which generates low level C code [7], because it is the only one
that allows us to explicitly manipulate stacks (see Section4.3). The abstract machine
targeted by this low level backend has three main data areas:a heap and two stacks.
The heap is managed by the Boehm-Demers-Weiser conservative garbage collector for
C. Since this collector was not designed for logic programming systems, it does not
support any mechanism to deallocate all the memory blocks allocated since a specific
point in time. Thus Mercury, unlike Prolog, does not recovermemory by backtracking
and recovers all memory blocks via garbage collection.

The Mercury abstract machine has two stacks: thedet stackand thenondet stack. In
most programs, most procedures can succeed at most once. This means that one cannot
backtrack into a call to such a procedure after the procedurehas succeeded, and thus
there is no need to keep around the arguments and local variables of the call after the
initial success (or failure, for semidet procedures). Mercury therefore puts the stack
frames of such procedures on the det stack, which is managed in strict LIFO fashion.

Procedures that can succeed more than once have their stack frames allocated on
the nondet stack. These frames are removed only when procedures fail. Since the stack
frames of such calls stick around when the call succeeds, thenondet stack is not a true
LIFO stack. Given a clausep(. . .) :- q(. . .), r(. . .), s(. . .), wherep, q andr are
all nondet or multi, the stack will contain the frames ofp, q andr in order just after the
call tor. After r succeeds and control returns top, the frames of the calls toq andr are
still on the stack. The Mercury abstract machine thus has tworegisters to point to the
nondet stack:maxfr always points to the top frame, whilecurfr points to the frame
of the currently executing call. (If the currently executing call uses the det stack, then
curfr points to the frame of its most recent ancestor that uses the nondet stack.)

There are two kinds of frames on the nondet stack:ordinary and temporary. An
ordinary frame is allocated for a procedure that can succeedmore than once, i.e. whose
determinism is nondet or multi. Such a frame is equivalent tothe combination of a
choice point and an environment in a Prolog implementation based on the WAM [10].
Ordinary nondet stack frames have five fixed slots and a variable number of other slots.
The other slots hold the values of the variables of the procedure, including its argu-
ments; these are accessed via offsets fromcurfr. The five fixed slots are:

prevfr The previous frame slot points to the stack frame immediately below this one.
(Both stacks grow higher.)

redoip The redo instruction pointer slot contains the address of the instruction to
which control should be transferred when backtracking into(or within) this call.

redofr The redo frame pointer slot contains the address that shouldbe assigned to
curfr when backtracking jumps to the address in theredoip slot.

succip The success instruction pointer slot contains the address of the instruction to
which control should be transferred when the call of this stack frame succeeds.

succfr The success frame pointer slot contains the address of the stack frame that
should be assigned tocurfr when the call owning this stack frame succeeds; this
will be the stack frame of its caller.

The redoip andredofr slots together constitute the failure continuation, whilethe
succip andsuccfr slots together constitute the success continuation. In theexample
above, bothq’s andr’s stack frames have the address ofp’s stack frame in theirsuccfr
slots, while theirsuccip slots point to the instructions inp after their respective calls.

The compiler converts multi-clause predicate definitions into disjunctions. When
executing in the code of a disjunct, theredoip slot points to the first instruction of the
next disjunct or, if this is the last disjunct, to the addressof the failure handler whose
code removes the top frame from the nondet stack, setscurfr from the value in the
redofr slot of the frame that is now on top, and jumps to the address inits redoip slot.
Disjunctions other than the outermost one are implemented using temporary nondet
stack frames, which have onlyprevfr, redoip andredofr slots [8].

The stack slot assigned to a variable contains garbage before the variable is instanti-
ated; afterward, it contains the value of the variable. Since the compiler knows the state
of instantiation of every visible variable at every programpoint, the code it generates
will never look at stack slots containing garbage. This means that backtracking does not
have to reset variables to unbound, which in turn means that the Mercury implementa-
tion does not need a trail.

3 Tabling in Mercury

In tabling systems, some predicates are declaredtabledand use tabled resolution for
their evaluation; all other predicates arenon-tabledand are evaluated using SLD. Mer-
cury also follows this scheme, but it supports three different forms of tabled evaluation:
memoization (caching), loop checking, and minimal model evaluation. We concentrate
on the last form, which is the most interesting and subsumes the other two.

The idea of tabling is to remember the first invocation of eachcall (henceforth re-
ferred to as agenerator) and its computed results in tables (in acall tableand ananswer
tablerespectively), so that subsequent identical calls (referred to as theconsumers) can
use the remembered answers without repeating the computation. Mercury programmers

:- pred path(int::in, int::out) is nondet.

:- pragma minimal model(path/2).

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

who are interested in computing the an-
swers of tabled predicate calls according
to theperfect modelsemantics can use the
‘minimal model’ pragma. An example is
the usualpath predicate on the right.

Predicates withminimal model pragmas are required to satisfy two requirements
not normally imposed on all Mercury predicates. The first requirement is that the set of
values computed by the predicate for its output arguments iscompletely determined by
the values of the input arguments. This means that the predicate must not do I/O; it must

also bepure, i.e., free of observable side-effects such as updating thevalue of a global
variable through the foreign function interface. The second is that each argument of a
minimal model predicate must be either fully input (ground at call and at return) or fully
output (free at call, ground at return). In other words, partially instantiated arguments
and arguments of unknown instantiation are not allowed. Howthis restriction affects
the implementation of tabling in Mercury is discussed in thefollowing section.

When a call to a minimal model predicate is made, the program must check whether
the call exists in the call table or not. In SLG terminology [1], this takes place using the
NEW SUBGOAL operation. If the subgoals is new, it is entered in the table and this
call, as the subgoal’s generator, will usePROGRAM CLAUSE RESOLUTIONto derive
answers. The generator will use theNEW ANSWER operation to record each answer it
computes in a global data structure called theanswer tableof s. If, on the other hand, (a
variant of)s already exists in the table, this call is a consumer and will resolve against
answers from the subgoal’s answer table. Answers are fed to the consumer one at a time
throughANSWER RETURNoperations.

Because in general it is not knowna priori how many answers a tabled call will
get in its table, and because there can be mutual dependencies between generators and
consumers, the implementation requires: (a) a mechanism toretain (or reconstruct) and
reactivate the execution environments of consumers until there are no more answers for
them to consume, and (b) a mechanism for returning answers toconsumers and deter-
mining when the evaluation of a (generator) subgoal iscomplete, i.e. when it has pro-
duced all its answers. As mentioned, we chose the CAT suspension/resumption mech-
anism as the basis for Mercury’s tabling implementation. However, we had to adapt it
to Mercury and extend it in order to handle existential quantification and negated con-
texts. For completion, we chose theincremental completionapproach described in [6].
A subgoal can be determined to be complete if all program clause resolution has fin-
ished and all instances of this subgoal have resolved against all derived answers. How-
ever, as there might exist dependencies between subgoals, these have to be taken into
account by maintaining and examining the subgoal dependency graph, finding a set of
subgoals that depend only on each other, completing them together, and then repeating
the process until there are no incomplete subgoals. We referto these sets of subgoals
asscheduling components. The generator of some subgoal (typically the oldest) in the
component is called the component’sleader.

4 The Implementation of Tabling in Mercury

4.1 The tabling transformation and its supporting data structures

Mercury allows programmers to use impure constructs to implement a pure interface,
simply by making a promise to this effect. The tabling implementation exploits this
capability. Given a pure predicate such aspath/2, a compiler pass transforms its body
by surrounding it with impure and semipure code as shown in Fig. 3 (impure code
may write global variables; semipure code may only read them). Note that the compiler
promises that the transformed code behaves as a pure goal, since the side-effects inside
are not observable from the outside.

As mentioned, the arguments of tabled procedures must be either fully input or fully
output. This considerably simplifies the implementation ofcall tables. SLG resolution
considers two calls to represent the same subgoal if they arevariants, i.e., identical up
to variable renaming. In Mercury, this is the case if and onlyif the two calls have the
same ground terms in their input argument positions, because the output arguments of
a call are always distinct variables. Conceptually, the call table of a predicate withn
input arguments is a tree withn + 1 levels. Level0 contains only the root node. Each
node on level1 corresponds to a value of the first input argument that the predicate has
been called with; in general, each node on levelk corresponds to a combination of the
values of the firstk input arguments that the predicate has been called with. Thus each
node on leveln uniquely identifies a subgoal.

The transformed body of a minimal model predicate starts by looking up the call
table to see whether this subgoal has been seen before or not.Given a predicate declared
as in the code shown in Fig. 1, the minimal model tabling transformation inserts the
code shown on the same figure at the start of its procedure body.

:- pred p(int::in, string::in, int::out, t1::in, t2::out) is nondet.

:- pragma minimal model(p/5).

p(In1, In2, Out1, In3, Out2) :-

...

pickup call table root for p 5(CallTableRoot),
impure lookup insert int(CallTableRoot, In1, CallNode1),

impure lookup insert string(CallNode1, In2, CallNode2),
impure lookup insert user(CallNode2, In3, CallNode3),
impure subgoal setup(CallNode3, Subgoal, Status)

Fig. 1.Type-directed program transformation for arguments of tabled calls

We store all the information we have about each subgoal in asubgoal structure. We
reach the subgoal structure of a given subgoal through a pointer in the subgoal’s level
n node in the call table. The subgoal structure has the following eight fields (cf. Fig. 2),
which we will discuss as we go along: 1) the subgoal’s status (new, activeor complete);
2) the chronological list of the subgoal’s answers computedso far; 3) the root of the
subgoal’s answer table; 4) the list of the consumers of this subgoal; 5) the leader of the
scheduling component this subgoal belongs to; 6) if this subgoal is the leader, the list
of its followers; 7) the address of the generator’s frame on the nondet stack; and 8) the
address of the youngest nondet stack frame that is an ancestor of both this generator
and all its consumers; we call this the nearest common ancestor (NCA).

root for p/5

CallTableRoot

(size, num_entries, etc) Header Trie RootHeader

CallNode1

Hash Table (for values of In1)

CallNode2

Hash Table (for values of In2)

Trie (for values of In3)

CallNode3

Subgoal Structure

Status

Answer Table

Answer List

Consumer List

Subgoal’s Leader

Follower List

Gener nondet Addr

NCA nondet Addr

Fig. 2.Data structures created for the calls of predicatep/5

path(A, B) :-
promise pure (

pickup call table root for path 2(CallTableRoot),
impure lookup insert int(CallTableRoot, A, CallNode1),
impure subgoal setup(CallNode1, Subgoal, Status),

(% switch on ‘Status’
Status = new,

(
impure mark as active(Subgoal),
% original body of path/2 in the two lines below

edge(A, C),
(C = B ; path(C, B)),

semipure get answer table(Subgoal, AnsTabRoot),
impure lookup insert int(AnsTabRoot, B, AnsNode1),

impure answer is not duplicate(AnsNode1),
impure new answer block(Subgoal, 1, AnsBlock),
impure save answer(AnsBlock, 0, B)

;
impure completion(Subgoal),

fail
)

;

Status = complete,
semipure return all answers(Subgoal, AnsBlock),

semipure restore answer(AnsBlock, 0, B)
;

Status = active,
impure suspend(Subgoal, AnsBlock),
semipure restore answer(AnsBlock, 0, B)

)
).

Fig. 3.Example of the tabling transformation on path/2

In the code of Fig. 3,
CallTableRoot,CallNode1,
CallNode2 and CallNode3

are all pointers to nodes
in the call tree at levels
0, 1, 2 and 3 respectively;
see Fig. 2.CallTableRoot
points to the global vari-
able generated by the Mer-
cury compiler to serve as the
root of the call table for this
procedure. This variable is
initialized to NULL, indicat-
ing no child nodes yet. The
first call to p/5 will cause
lookup insert int to cre-
ate a hash table in which ev-
ery entry is NULL, and make
the global variable point to
it. The lookup insert int

call will then hashIn1, cre-
ate a new slot in the indicated
bucket (or in one of its over-
flow cells) and return the address of the new slot asCallNode1. At later calls, the hash
table will exist, and by then we may have seen the then currentvalue ofIn1 as well;
lookup insert int will perform a lookup if we have and an insertion if we have not.
Either way, it will return the address of the slot selected byIn1. The process then gets
repeated with the other input arguments. (The predicates being called are different be-
cause Mercury uses different representations for different types. For example, integers
are hashed directly but we hash the characters of a string, not its address.)
User-defined typesValues of these types consist of a function symbol applied tozero
or more arguments. In a strongly typed language such as Mercury, the type of a variable
directly determines the set of function symbols that variable can be bound to. The data
structure we use to represent a function symbol from user-defined types is therefore a
trie, a data structure which has extensively been used in tabled systems [4]. If the func-
tion symbol is a constant, we are done. If it has arguments, thenlookup insert user

processes them one by one the same way we process the arguments of predicates, using
the slot selected by the function symbol to play the role of the root. In this way, the path
in the call table from the root to a leaf node representing a given subgoal has exactly
one trie node or hash table on it for each function symbol in the input arguments of the
subgoal; their order is given by a preorder traversal of those function symbols.
Polymorphic typesThis scheme works for monomorphic predicates because at each
node of the tree, the type of the value at that node is fixed, andthe type determines
the mechanism we use to table values of that type (integer, string or float hash table
for builtin types, a trie for user-defined types). For polymorphic predicates (whose sig-
natures include type variables) the caller passes extra arguments identifying the actual

types bound to those type variables. We first table these arguments, which are terms of
a builtin type. Once we have followed the path from the root tothe level of the last of
these arguments, we have arrived at what is effectively the root of the table for a given
monomorphic instance of the predicate’s signature, and we proceed as described above.

4.2 The tabling primitives

Thesubgoal_setup primitive ensures the presence of the subgoal’s subgoal structure.
If this is a new subgoal, thenCallNode3 will point to a table node containing NULL.
In that case,subgoal_setup will (a) allocate a new subgoal structure, initializing its
fields to reflect the current situation, (b) update the table node pointed to byCallNode3
to point to this new structure, and (c) return this same pointer asSubgoal. If this is not
the first call to this procedure with these input arguments, thenCallNode3 will point
to a table node that contains a pointer to the previously allocated subgoal structure, so
subgoal_setupwill just return this pointer.

subgoal_setup returns not justSubgoal, but also the subgoal’s status. When first
created, the status of the subgoal is set tonew. It becomesactivewhen a generator has
started work on it and becomescompleteonce it is determined that the generator has
produced all its answers.

What the transformed procedure body does next depends on thesubgoal’s initial sta-
tus. If the status isactiveor complete, the call becomes one of the subgoal’s consumers.
If it is new, the call becomes the subgoal’s generator and executes the original body of
the predicate after changing the subgoal’s status toactive. When an answer is gener-
ated, we check whether this answer is new. We do this by usingget_answer_table to
retrieve the root of the answer table from the subgoal structure, and inserting the output
arguments into this table one by one, as we inserted the inputarguments into the call
table. The node on the last level of the answer table thus uniquely identifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table se-
lected by the output argument values is NULL, then this is thefirst time we have com-
puted this answer for this subgoal, and the call succeeds. Otherwise it fails. (To make
later calls fail,answer_is_not_duplicate sets the tip to non-NULL on success.) We
thus get to callnew_answer_block only if the answer we just computed is new.

new_answer_block adds a new item to the end of the subgoal’s chronological list
of answers, the new item being a fresh new memory block with room for the given
number of output arguments. The call tonew_answer_block is then followed by a call
to save_answer for each output argument to fill in the slots of the answer block.

When the last call tosave_answer returns, the transformed code of the tabled pred-
icate succeeds. When backtracking returns control to the tabled predicate, it will drive
the original predicate body to generate more and more answers. In programs with a fi-
nite perfect model, the answer generation will eventually stop, and execution will enter
the second disjunct, which invokes thecompletion primitive. This will make the an-
swers generated so far for this subgoal available to any consumers that are waiting for
such answers. This may generate more answers for this subgoal if the original predicate
body makes a call, directly or indirectly, to this same subgoal. Thecompletion prim-
itive will drive this process to a fixed point (see Sect. 4.5) and then mark the subgoal

ascomplete. Having already returned all answers of this subgoal from the first disjunct,
execution fails out of the body of the transformed predicate.

If the subgoal is initiallycomplete, we callreturn_all_answers, which succeeds
once for each answer in the subgoal’s chronological list of answers. For each answer,
calls torestore_answer pick up the output arguments put there bysave_answer.

If the initial status of the subgoal isactive, then this call is a consumer but the
generator is not known to have all its answers. We therefore call thesuspend primitive.
suspend has the same interface asreturn_all_answers, but its implementation is
much more complicated. We invoke thesuspend primitive when we cannot continue
computing along the current branch of the SLD tree. The main task of the suspension
operation is therefore to record the state of the current branch of the SLD tree to allow its
exploration later, and then simulate failure of that branch, allowing the usual process of
backtracking to switch execution to the next branch. Sometime later, thecompletion
primitive will restore the state of this branch of the SLD tree, feed the answers of the
subgoal to it, and let the branch compute more answers if it can.

4.3 Suspension of consumers

The suspend primitive starts by creating aconsumer structureand adding it to the
current subgoal’s list of consumers. This structure has three fields: a pointer to this sub-
goal’s subgoal structure (available insuspend’s Subgoal argument), an indication of
which answers this consumer has consumed so far, and the saved state of the consumer.

Making a copy of all the data areas of the Mercury abstract machine (det stack, non-
det stack, heap and registers) would clearly be sufficient torecord the state of the SLD
branch, but equally clearly it would also be overkill. To minimize overhead, we want
to record only the parts of the state that contain needed information which can change
between the suspension of this SLD branch and any of its subsequent resumptions. For
consumer suspensions, the preserved saved state is as follows.
RegistersThe special purpose abstract machine registers (maxfr, curfr, the det stack
pointersp, and the return address registersuccip) all need to be part of the saved state,
but of all the general purpose machine registers used for parameter passing, the only one
that contains live data and thus needs to be saved is the one containingSubgoal.

Heap With Mercury’s conservative collector, heap space is recovered only by garbage
collection and never by backtracking. This means that a termon the heap will naturally
hang around as long as a pointer to it exists, regardless of whether that pointer is in a
current stack or in a saved copy. Moreover, in the absence of destructive updates, this
data will stay unchanged. This in turn means that, unlike a WAM-based implementation
of CAT, Mercury’s implementation of minimal model tablingdoes not need to save or
restore any part of the heap. This is a big win, since the heap is typically the largest area.
The tradeoff is that we need to save more data from the stacks,because the mapping
from variables to values (the current substitution) is stored entirely in stack slots.

StacksThe way Mercury uses stack slots is a lot closer to the runtimesystems of im-
perative languages than to the WAM. First of all, there are nolinks between variables
because the mode system does not allow two free variables to be unified. Binding a vari-
able to a value thus affects only the stack slot holding the variable. Another difference
concerns the timing of parameter passing. If a predicatep makes the callq(A), and the

definition ofq has a clause with headq(B), then in Prolog,A would be unified withB
at the time of the call, and any unification insideq that bindsB would immediately up-
dateA in p’s stack frame. In Mercury, by contrast, there is no information flow between
caller and callee except at call and return. At call, the caller puts the input arguments
into abstract machine registers and the callee picks them up; at return, the callee puts
the output arguments into registers and the caller picks them up. Each invocation puts
the values it picks up into a slot of its own stack frame when itnext executes a call. The
important point is that the only code that modifies a stack framefr is the code of the
procedure that createdfr.

CAT saves the frames on the stacks between the stack frame of the generator (ex-
cluded) and the consumer (included), and uses the WAM trail to save and restore ad-
dresses and values of variables which have been bound since the creation of a con-
sumer’s generator. Mercury has no variables on its heap, butwithout a mechanism like
the trail to guide the selective copying of stack slots whichmight change values, it must
make sure that suspension saves information inall stack frames that could be modified
between the suspension of a consumer and its resumption by its generator. The deep-
est frame on the nondet stack that this criterion requires usto save is the frame of the
nearest common ancestor(NCA) of the consumer and the generator. We find the NCA
by initializing two pointers to point to the consumer and generator stack frames, and
repeatedly replacing whichever pointer is higher with thesuccfr link of the frame it
points to, stopping when the two pointers are equal.

Two technical issues deserve to be mentioned. Note that wemustsave the stack
frame of the NCA because the variable bindings in it may have changed between the
suspension and the resumption. Also, it is possible for the nearest common ancestor of
the generator and consumer to be a procedure that lives on thedet stack. The expanded
version of this paper [8] gives examples of these situations, motivates the implementa-
tion alternatives we chose to adopt, and argues for the correctness of saving (only) this
information for consumers.

4.4 Maintenance of subgoal dependencies and their influenceon suspensions

We have described suspension as if consumers will be scheduled only by their nearest
generator. This is indeed the common case, but as explained in Section 3 there are also
situations in which subgoals are mutually dependent and cannot be completed on an
individual basis. To handle such cases, Mercury maintains astack-based approximation
of dependencies between subgoals, in the form of schedulingcomponents. For each
scheduling component (a group subgoals that may depend on each other), itsleaderis
the youngest generatorGL for which all consumers younger thanGL are consumers of
generators that are not older thanGL. Of all scheduling components, the one of most
interest is that on the top of the stack. This is because it is the one whose consumers
will be scheduled first. We call its leader thecurrent leader.

The maintenance of scheduling components is reasonably efficient. Information
about the leader of each subgoal and the leader’sfollowersis maintained in the subgoal
structure (cf. Fig. 2). Besides creation of a new generator (in which case the generator
becomes the new current leader with no followers), this information possibly changes
whenever execution creates a consumer suspension. If the consumer’s generator,G, is

the current leader or is younger than the current leader, no change of leaders takes place.
If G is older than the current leader, acouphappens,G becomes the current leader, and
its scheduling component gets updated to contain as its followers the subgoals of all
generators younger thanG. In either case, the saved state for the consumer suspension
will be till the NCA of the consumer and the current leader. This generalizes the scheme
described in the previous section.

Because a coup can happen even after the state of a consumer has been saved, we
also need a mechanism to extend the saved consumer states. The mechanism we have
implemented consists of extending the saved state of all consumers upon change of
leaders. When a coup happens, the saved state of all followers (consumers and genera-
tors) of the old leader is extended to the stack frame of the NCA of each follower and
the new leader. Unlike CAT which tries to share the trail, heap, and local stack segments
it copies [2], in Mercury we have not (yet) implemented sharing of the copied stack seg-
ments. It is our intention to implement and evaluate such a mechanism. However, note
that the space problem is not as severe in Mercury as it is in CAT, because in Mercury
there is no trail and no information from the heap is ever copied, which means that heap
segments for consumers are naturally shared.

On failing back to a generator which is a leader, scheduling of answers to all its
followers will take place, as described below. When the scheduling component gets
completed, execution will continue with the immediately older scheduling component,
whose leader will then become the current leader.

4.5 Resumption of consumers and completion

The main body of thecompletion primitive consists of three nested loops: over all
subgoals in the current scheduling componentS, over all consumers of these subgoals,
and over all answers to be returned to those consumers. The code in the body of the
nested loops arranges for the next unconsumed answer to be returned to a consumer
of a subgoal inS. It does this by restoring the stack segments saved by thesuspend

primitive, putting the address of the relevant answer blockinto the abstract machine
register assigned to the return value ofsuspend, restoring the other saved abstract ma-
chine registers, and branching to the return address storedin suspend’s stack frame.
Each consumer resumption thus simulates a return from the call to suspend.

Since restoring the stack segments from saved states of consumers clobbers the state
of the generator that does the restoring (the leader ofS), thecompletion primitive
first saves the leader’s own state, which consists of saving the nondet stack down to the
oldest NCA of the leader generator and any of the consumers itschedules, and saving
the part of the det stack allocated since the creation of thisnondet frame. To provide
the information required for the second part of this operation, we extend every ordinary
nondet stack frame with a sixth slot that contains the address of the top of the det stack
at the time of the nondet stack frame’s creation.

Resumption of a consumer essentially restores the saved branch of the SLD search
tree, but restoring its saved stack segmentsintact is not a good idea. The reason is that
leaving theredoip slots of the restored nondet stack frames unchanged resumesnot
just the saved branch of the SLD search tree, but also the departure points of all the
branches going off to its right. Those branches have been explored immediately after

the suspension of the consumer, because suspension involves simulating the failure of
the consumer, thus initiating backtracking. When we resumea consumer to consume
an answer, we do not want to explore the exact same alternatives again, since this could
lead to an arbitrary slowdown. We therefore replace all theredoips in saved nondet
stack segments to make them point to the failure handler in the runtime system. This
effectively cuts off the right branches, making them fail immediately. Given the choice
between doing this pruning once when the consumer is suspended or once for each time
the consumer is resumed, we obviously choose the former.

This pruning means that when we restore the saved state of a consumer, only the
success continuations are left intact, and thus the only saved stack frames the restored
SLD branch can access are those of the consumer’s ancestors.Any stack frames that
are not the consumer’s ancestors have effectively been saved and restored in vain.

When a resumed consumer has consumed all the currently available answers, it
fails out of the restored segment of the nondet stack. We arrange to get control when
this happens by setting theredoip of the very oldest frame of the restored segment to
point to the code of thecompletion primitive. Whencompletion is reentered in this
way, it needs to know that the three-level nested loop has already started and how far it
has gone. We therefore store the state of the nested loop in a global record. When this
state indicates that we have returned all answers to all consumers of subgoals inS, we
have reached a fixed point. At this time, we mark all subgoals in S ascompleteand we
reclaim the memory occupied by the saved states of all their consumers and generators.

4.6 Existential quantification

Mercury supports existential quantification. This construct is usually used to check
whether a component of a data structure possesses a specific property as in the code:

:- pred list contains odd number(list(int)::in) is semidet.

list contains odd number(List) :- some [N] (member(N, List), odd(N)).

Typically the code inside the quantification may have more than one solution, but the
code outside only wants to check whether a solutionexistswithout caring about the
number of solutions or their bindings. One can thus convert amulti or nondet goal into
a det or semidet goal by existentially quantifying all its output variables. Mercury im-
plements quantifications of that form using what we call acommitoperation, which
some Prologs call aonceoperation. The operation savesmaxfr when it enters the goal
and restores it afterward, throwing away all the stack frames that have been pushed onto
the nondet stack in the meantime. The interaction with tabling arises from the fact that
the discarded stack frames can include the stack frame of a generator. If this happens,
the commit removes all possibility of the generator being backtracked into ever again,
which in turn may prevent the generation of answers and completion of the correspond-
ing subgoal. Without special care, all later calls of that subgoal will become consumers
who will wait forever for the generator to schedule the return of their answers.

To handle such situations, we introduce of a new stack which we call thecut stack.
This stack always has one entry for each currently active existentially quantified goal;
new entries are pushed onto it when such a goal is entered and popped when that goal
either succeeds or fails. Each entry contains a pointer to a list of generators. Whenever

a generator is created, it is added to the list in the entry currently on top of the cut stack.
When the goal inside the commit succeeds, the code that pops the cut stack entry checks
its list of generators. For all generators whose status is not complete, we erase all trace
of their existence and reset the call table node that points to the generator’s subgoal
structure back to a null pointer. This allows later calls to that subgoal to become new
generators.

If the goal inside the commit fails, the failure may have beendue to the simulated
failure of a consumer inside that goal. When the state of the consumer is restored, it may
well succeed, which means that any decision the program may have taken based on the
initial failure of the goal may be incorrect. When the goal inside the commit fails, we
therefore check whether any of the generators listed in the cut stack entry about to be
popped off have a status other thancomplete. Any such generator must have consumers
whose failure may not be final, so we throw an exception in preference to computing
incorrect results. Note that this can happen only when the leader of the incomplete
generator’s scheduling component is outside the existential quantification.

4.7 Possibly negated contexts

The interaction of tabling with cuts and Prolog-style negation is notoriously tricky.
Many implementation papers on tabling ignore the issue altogether, considering only
the definite subset of Prolog. An implementation of tabling for Mercury cannot duck
the issue. Mercury programs rely extensively on if-then-elses, and if-then-elses involve
negation: “if C then T else E” is semantically equivalent to(C ∧ T) ∨ (¬∃C ∧ E).
Of course, operationally the condition is executed only once. The conditionC is a
possibly negated context: it is negated only if it has no solutions. Mercury implements
if-then-else using asoft cut: if the condition succeeds, it cuts away the possibility of
backtracking to the else part only (the condition may succeed more than once).

If C fails, execution should continue at the else part of the if-then-else. This poses
a problem for our implementation of tabling, because the failure of the condition does
not necessarily imply thatC has no solution: it may also be due to the suspension of a
consumer called (directly or indirectly) somewhere insideC, as in the code below.

p(. . .) :- tg(. . .), (if (. . ., tc(. . .), . . .) then . . . else . . .), . . .

If tc suspends and is later resumed to consume an answer, the condition may evaluate to
true. However, by then the damage will have been done, because we will have executed
the code in theelse part.

We have not yet implemented a mechanism that will let us compute the correct
answer in such cases, because any such mechanism would need the ability to transfer
the “generator-ship” of the relevant subgoal from the generator of t to its consumer,
or something equivalent. However, wehaveimplemented a mechanism that guarantees
that incorrect answers will not be computed. This mechanismis thepossibly-negated-
context stack, or pneg stackfor short. We push an entry onto this stack when entering
a possibly negated context such as the condition of an if-then-else. The entry contains
a pointer to a list of consumers, which is initially empty. When creating a consumer,
we link the consumer into the list of the top entry on the pneg stack. When we enter
the else part of the if-then-else, we search this list looking for consumers that are sus-
pended. Since suspension simulates failure without necessarily implying the absence of

further solutions, we throw an exception if the search finds such a consumer and abort
execution. If not, we simply pop the entry of the pneg stack. We also perform the pop on
entry to the then part of the if-then-else. Since in that casethere is no risk of committing
to the wrong branch of the if-then-else, we do so without looking at the popped entry.

There are two other Mercury constructs that could compute wrong answers if the
failure of a goal does not imply the absence of solutions for it. The first is negation. We
handle negation as a special case of if-then-else:¬G is equivalent to “if G then fail

else true”. The other is the generic all-solutions primitivebuiltin_aggregate,
which serves as the basic building block for all of Mercury’sall-solutions predicates.
The implementation ofbuiltin_aggregateuses a failure driven loop. To ward against
builtin_aggregate(Closure, ...) mistaking the failure ofcall(Closure) due
to a suspension somewhere insideClosure as implying the absence of solutions to
Closure, we treat the loop body as the condition of an if-then-else, i.e. we surround it
with the code we normally insert at the start of the conditionand the start of the else
part (see [8] for the details).

Entries on both the cut stack and the pneg stack contain a fieldthat points to the stack
frame of the procedure invocation that created them, which is of course also responsible
for removing them. When saving stack segments or extending saved stack segments, we
save an entry on the cut stack or the pneg stack if the nondet stack frame they refer to
is in the saved segment of the nondet stack.

5 Performance Evaluation

We ran several benchmarks to measure the performance of Mercury with tabling sup-
port, but space limitations allow presenting only some of them here.

Overhead of the grade with full tabling supportWe compiled the Mercury compiler in
two grades that differ in that one supports minimal model tabling, the form of tabling
discussed in this paper, by including the cut and pneg stacksand the extra slot on nondet
stack frames, and while the other, lacking these extras, supports only the other forms of
tabling (memoization and loop checking). Enabling supportfor minimal model tabling
without using it (the compiler has no minimal model predicates) increases the size of
the compiler executable by about 5%. On the standard benchmark task for the Mer-
cury compiler, compiling six of its own largest modules, moving to a minimal model
grade with full tabling support slows the compiler down by about 25%. (For compari-
son, enabling debugging leads to a 455% increase in code sizeand a 135% increase in
execution time.) First of all, it should be mentioned that paying this 25% cost in time
happens only if the user selects a grade with minimal model tabling support: programs
that do not use minimal model tabling at all can use the default asm fast.gc grade and
thus not pay any cost whatsoever. Moreover, this 25% is probably an upper limit. (See
also the results in Table 3 which overall show less than 19% overhead.) Virtually all of
this cost in both space and time is incurred by the extra code we have to insert around
possibly negated contexts; the extra code around commits and the larger size of nondet
stack frames have no measurable overheads (see the data in [8]). If we had an analysis
that could determine that tabled predicates are not involved (directly or indirectly) in
a possibly negated context, this overhead could be totally avoided for that context. We
are now working on such an analysis.

Table 1.Times (in secs) to execute various versions of transitive closure

chain cycle
benchmarksize iter XSB XXX YAP Mercury XSB XXX YAP Mercury
tc lr +- 4K 200 0.62 0.51 0.28 0.58 0.63 0.52 0.28 0.59
tc lr +- 8K 200 1.24 1.05 0.62 1.27 1.27 1.07 0.62 1.30
tc lr +- 16K 200 2.57 2.15 1.51 2.47 2.62 2.12 1.48 2.61
tc lr +- 32K 200 5.25 4.41 3.78 5.23 5.20 4.44 3.78 5.07
tc lr -- 2K 1 2.58 2.46 1.25 3.20 6.22 6.30 2.88 6.24
tc rr -- 2K 1 2.21 2.04 2.94 10.27 6.35 5.85 6.00 27.48

Comparison against other implementations of tablingWe compared the minimal model
grade of Mercury (using rotd-06-10-2005, based on CAT) against XSB (2.7.1, based
on the SLG-WAM), the XXX system (derived from XSB but based onCHAT) and
YAP (version in CVS at 28 July 2005, based on SLG-WAM). XSB andXXX use local
scheduling[6] in the default configuration while YAP usesbatched scheduling. Mer-
cury’s scheduling strategy is similar but not identical to batched scheduling. All bench-
marks were run on an IBM ThinkPad R40 laptop with a 2.0 GHz Pentium4 CPU and
512 Mb of memory running Linux. All times were obtained by running each benchmark
eight times, discarding the lowest and highest values, and averaging the rest.

The first set of benchmarks consists of left- and right-recursive versions of transitive
closure. In each case, the edge relation is a chain or a cycle.In a chain of sizen, there
aren− 1 edges of the formk → k + 1 for 0 ≤ k < n; in a cycle of sizen, there is also
an edgen → 0. We use two query forms: the query with the first argument input and the
second output (+-) and the open query with both arguments output (--). The number
of solutions is linear in the size of the data for the+- query and quadratic for--. The
second set consists of versions of the same generation predicate with full indexing (i) or
Prolog-style first-argument indexing only (p), with the same two kinds of queries. Each
table entry shows how long it takes for a given system to run the specified query on the
specified dataiter times (iter=50 for thesg benchmarks). The tables are reset between
iterations. In Tables 1 and 2, benchmarks use a failure driven loop or its equivalent to
perform the iterations, while in Table 3 they use a tail-recursive driver predicate.

Table 2.Times (in secs) to execute various versions of same generation

benchmark XSB XXX YAP Mercury
sg i+- 1.21 1.32 0.34 1.05
sg i-- 3.53 3.89 1.07 2.43
sg p+- 83.56 58.1734.58 32.14
sg p-- 237.58161.0877.63 92.64

The rows for the+- query on left recursive transitive closure show all runtimes to
be linear in the size of the data, as expected. Also, on left recursion, regardless of query,
YAP is fastest, and XSB, XXX and Mercury are pretty similar. On right recursion,
Mercury is slower than the other systems due to saving and restoring stack segments
of consumers, and having to do so more times due to its different scheduling strategy
(YAP doesn’t do save/restore). It is unfortunate that not all systems implement the same
scheduling strategy. However, local evaluation (i.e., postponing the return of answers
to the generator until the subgoal is complete) is not compatible with the pruning that

Mercury’s execution model requires in existential quantifications, a construct not prop-
erly handled in Prolog systems with tabling. On the same generation (sg) benchmark,
in which consumer suspensions are not created (variant subgoals are only encountered
when the subgoals are completed), Mercury is clearly much faster than XSB and XXX,
although it is still beaten by YAP in three cases out of four. Two reasons why Mercury’s
usual speed advantage doesn’t materialize here are that (1)these benchmarks spend
much of their time executing tabling’s primitive operations, which are in handwritten C
code in all four systems, and (2) the Prolog systems can recover the memory allocated
by an iteration by resetting the heap pointer, whereas in Mercury this can be done only
by garbage collection. (Although the benchmark programs are Datalog, the all-solutions
predicate used by the benchmark harness allocates heap cells.)

Table 3.Times (in secs) to execute some standard untabled Prolog benchmarks

benchmark cqueencrypt deriv nrev primes qsortqueenquery tak total
iterations 60K 30K 500K 300K 150K 300K 2K 100K 1K
Mercury plain 1.92 5.44 5.61 7.99 6.43 6.37 4.77 0.70 0.52 39.8
Mercury tabled 3.26 7.17 4.96 7.08 8.80 7.41 5.83 0.89 1.80 47.2
YAP 9.16 9.14 4.08 4.53 20.8915.35 12.40 6.4412.50 94.5
XXX 15.2710.86 8.08 6.94 31.6621.72 22.0917.4617.30 151.4
XSB 23.6417.2311.5816.71thrashes32.83 34.5629.6524.05 > 190.3

Table 3 shows the performance of the same four systems on ninestandard Prolog
benchmarks that do not use tabling, taken from [7]. Mercury is clearly the fastest system
by far, even when minimal model tabling is enabled but not used. It is beaten only on
nrev and deriv, which spendall their time in predicates that are tail recursive in Prolog
but not in Mercury.

It is very difficult to draw detailed conclusions from these small benchmarks, but we
can safely say that we succeeded in our objective of concentrating the costs of tabling
on the predicates that use tabling, reducing the performance of untabled predicates by
at most 25%. We can confidently expect Mercury to be much faster than Prolog systems
on programs in which relatively few consumer suspensions are encountered. The speed
of Mercury relative to tabled Prolog systems onreal tabled programs will depend on
what fraction of time they spend in tabled predicates.

Our most promising avenues for further improvement of tabling in Mercury are
clearly (1) improving the speed of saving and restoring suspensions and (2) implement-
ing a scheduling strategy that reduces the number of suspensions and resumptions.

6 Concluding Remarks

Adapting the implementation of tabling to Mercury has been achallenge because the
Mercury abstract machine is very different from the WAM. We have based our imple-
mentation on CAT because it is the only recomputation-free approach to tabling that
does not make assumptions that are invalid in Mercury. However, even CAT required
significant modifications to work properly with Mercury’s stack organization, its mech-
anisms for managing variable bindings, and its type-specific data representations. We
have described all these in this paper as well as describing two new mechanisms, the

cut and the pneg stack, which allow for safe interaction of tabling with language con-
structs such as if-then-else and existential quantification. These constructs are either not
available or not properly handled in other tabled LP systems.

In keeping with Mercury’s orientation towards industrial-scale systems, our design
objective was maximum performance on large programs containing some tabled pred-
icates, not maximum performance on the tabled predicates themselves. The distinction
matters, because it requires us to make choices that minimize the impact of tabling on
non-tabled predicates even when these choices slow down tabled execution. We have
been broadly successful in achieving this objective. Sincesupport for tabling is optional,
programs that do not use it are not affected at all. Even in programs that do use tabling,
non-tabled predicates only pay the cost of one new mechanism: the one ensuring the
safety of interactions between minimal model tabling and negation.

The results on microbenchmarks focusing on the performanceof the basic tabled
primitives themselves show tabling in Mercury to be quite competitive with that of other
high-performance tabling systems. It is faster on some benchmarks, slower on some
others, and quite similar on the rest, even though Mercury currently lacks some obvi-
ous tabling optimizations, such as sharing stack segment extensions among consumers.
How the system behaves on real tabled applications, writtenin Mercury rather than
Prolog, remains to be seen. Performing such a comparison across different languages
is not a trivial task because many applications of tabling often rely on features (e.g.,
inspection of tables during runtime or dynamic modifications of the Prolog database)
which are not available in Mercury. But one should not underestimate either the diffi-
culty or the importance of adding proper tabling in a safe wayto a truly declarative,
high-performance LP system and the power that this brings toit.

References

1. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
J. ACM, 43(1):20–74, Jan. 1996.

2. B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. J. of Functional and
Logic Programming, Nov. 1999.

3. H.-F. Guo and G. Gupta. A simple scheme for implementing tabled logic programming
systems based on dynamic reordering of alternatives. InProceedings of ICLP’01, pages
181–196, Nov/Dec. 2001.

4. I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient access mech-
anisms for tabled logic programs.J. of Logic Programming, 38(1):31–54, Jan. 1999.

5. R. Rocha, F. Silva, and V. Santos Costa. On applying or-parallelism and tabling to logic
programs.Theory and Practice of Logic Programming, 5(1 & 2):161–205, Jan. 2005.

6. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
logic programs.ACM Trans. on Prog. Lang. Syst., 20(3):586–634, May 1998.

7. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an efficient
purely declarative logic programming language.J. of Logic Progr., 26(1–3):17–64, 1996.

8. Z. Somogyi and K. Sagonas. Minimal model tabling in Mercury. Available at
http://www.cs.mu.oz.au/research/mercury/information/papers.html, 2005.

9. H. Tamaki and T. Sato. OLD resolution with Tabulation. InICLP ’86, pages 84–98. 1986.
10. D. H. D. Warren. An abstract Prolog instruction set. Tech. Rep. 309, SRI International, 1983.
11. N.-F. Zhou, Y.-D. Shen, L.-Y. Yuan and J.-H. You. Implementation of a linear tabling mech-

anism.J. of Functional and Logic Programming, 2001(10), 2001.

