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Abstract. For any LP system, tabling can be quite handy in a variety sksa
especially if it is efficiently implemented and fully inteded in the language. Im-
plementing tabling in Mercury poses special challengesdgeral reasons. First,
Mercury is both semantically and culturally quite differérom Prolog. While
decreeing that tabled predicates must not include cutscispgable in a Prolog
system, itis not acceptable in Mercury, since if-then®sed existential quantifi-
cation have sound semantics for stratified programs andsactvery frequently
both by programmers and by the compiler. The Mercury implaaten thus has
no option but to handle interactions of tabling with Mercetanguage features
safely. Second, the Mercury implementation is vastly dife from the WAM,
and many of the differences (e.g. the absence of a trail) kiaweficant impact
on the implementation of tabling. In this paper, we deschibe& we adapted the
copying approach to tabling to implement tabling in Mercury

1 Introduction

By now, it is widely recognized that tabling adds power toitogrogramming. By
avoiding repeated subcomputations, it often significaintiyroves the performance of
applications, and by terminating more often it allows for arennatural and declar-
ative style of programming. As a result, many Prolog systéeng., XSB, YAP, and
B-Prolog) nowadays offer some form of tabling. Mercury isaaduage with an effi-
cient implementation and comes with a module and a strong $yptem that ease the
development of industrial-scale applications. Like Pgosystems with tabling, Mer-
cury aims to encourage a more declarative style of programmhian “plain” Prolog.
This paper discusses implementation aspects of addingdabl Mercury.

When deciding which tabling mechanism to adopt, an impldores faced with
several choices. Linear tabling strategies [11, 3] aretivelly easy to implement (at
least for Prolog), but they are also relatively ad hoc androfterform recomputation.
Tabled resolution strategies such as OLDT [9] and SLG [1]cqraranteed to avoid
recomputation, but their implementation is challengingaaese they require the intro-
duction of a suspension/resumption mechanism into the lexsicution engine.

In the framework of the WAM [10], currently there are two mééchniques to im-
plement suspension/resumption. The one employed bothBafd in YAP [5], that of
the SLG-WAM [6], implements suspension \8tack freezingnd resumption using an
extended trail mechanism called tf@ward trail. The SLG-WAM mechanism relies



heavily on features specific to the WAM, and imposes a smalhbo-negligible over-
head orall programs, not just the ones which use tabling. The other maichanism,
CAT [2], completely avoids this overhead; it leaves the WAtisicks unchanged and im-
plements suspension/resumption by incrementally savidgestoring the WAM areas
that proper tabling execution needs to preserve in orderdinl @ecomputation.

For Mercury, we chose to base tabling on SLG resolution. Vé@ee to restrict the
implementation to the subset of SLG that handles stratifiednams. We chose CAT
as implementation platform, because the alternativesicomfith basic assumptions
of the Mercury implementation. For example, Mercury hasrad to freeze, let alone
a forward one, and freezing the staicka SLG-WAM breaks Mercury’s invariant that
calls to deterministic predicates leave the stack unchr@AT is simply the tabling
mechanism requiring the fewest, most isolated changeg thlércury implementation.
This has the additional benefit that it allows us to set up fistesn to minimize the
impact of tabling on the performance of program componérasdo not use tabling;
given an appropriate static analysis, the overhead canrbpletely eliminated.

This paper documents the implementation of tabling in Mer¢we actually aim
to compute a specific minimal model of stratified programe: plerfect model). We
describe how we adapted the CAT (Copying Approach to Taplimgchanism to a dif-
ferent implementation technology, one which is closer sdkecution model of con-
ventional languages than the WAM, and present the addlitaptanizations that can be
performed when tabling is introduced in such an environnténglly, we mention how
we ensure the safety of tabling’s interactions with Mer@&uiifythen-else and existential
quantification, constructs that would require the use ofrc@rolog.

The next section reviews Mercury and its implementatiorctiSe 3 introduces
tabling in Mercury, followed by the paper’s main sectiongen 4) which describes the
implementation of tabling in detail. A brief performancengmarison with other Prolog
systems with tabling implementations based on SLG resoi@ppears in Section 5.

2 A Brief Introduction to Mercury

Mercury is a pure logic programming language intended ferdteation of large, fast,
reliable programs. While the syntax of Mercury is based ensyntax of Prolog, se-
mantically the two languages are very different due to Mersipurity, its type, mode,
determinism and module systems, and its support for evidiabctions. Mercury has
a strong Hindley-Milner type system very similar to HaskelMercury programs are
statically typed; the compiler knows the type of every argabof every predicate (from
declarations or inference) and every local variable (frofarience).

The mode system classifies each argument of each predicaith@sinput or out-
put; there are exceptions, but they are not relevant to #gep If input, the argument
passed by the caller must be a ground term. If output, thenaegtipassed by the caller
must be a distinct free variable, which the predicate or tioncwill instantiate to a
ground term. It is possible for a predicate or function toeéhawre than one mode;
the usual example isppend, which has two principal modeappend (in,in,out)
and append (out ,out,in). We call each mode of a predicate or functioprace-
dure The Mercury compiler generates different code for différprocedures, even
if they represent different modes of the same predicate wction. Each procedure



has a determinism, which puts limits on the number of its iessolutions. Proce-
dures with determinisrdetsucceed exactly oncegmidetprocedures succeed at most
once;multi procedures succeed at least once; whidedetprocedures may succeed
any number of times. A complete description of the Mercunglaage can be found at
http://www.cs.mu.oz.au/research /mercury/information/doc-latest /mercury ref.

The Mercury implementatiohe front end of the Mercury compiler performs type
checking, mode checking and determinism analysis. Progithout any errors are
then subject to program analyses and transformations @sutlte one being presented
in Section 4) before being passed on to a backend for codea@re

The Mercury compiler has several backends. So far, tabdiilgplemented only for
the original backend which generates low level C code [7¢abse it is the only one
that allows us to explicitly manipulate stacks (see Sedli®). The abstract machine
targeted by this low level backend has three main data asehsap and two stacks.
The heap is managed by the Boehm-Demers-Weiser consergatitdage collector for
C. Since this collector was not designed for logic prograngrsystems, it does not
support any mechanism to deallocate all the memory blod&saibd since a specific
point in time. Thus Mercury, unlike Prolog, does not recawemory by backtracking
and recovers all memory blocks via garbage collection.

The Mercury abstract machine has two stacksditestackand thenondet stackin
most programs, most procedures can succeed at most onsen@&hns that one cannot
backtrack into a call to such a procedure after the procedasesucceeded, and thus
there is no need to keep around the arguments and local kewiabthe call after the
initial success (or failure, for semidet procedures). Meycaherefore puts the stack
frames of such procedures on the det stack, which is managgddt LIFO fashion.

Procedures that can succeed more than once have their staoisf allocated on
the nondet stack. These frames are removed only when praesefdil. Since the stack
frames of such calls stick around when the call succeedsidhdet stack is not a true
LIFO stack. Givenaclauge(...) :- q(...), r(...), s(...),wherep, qandr are
all nondet or multi, the stack will contain the framesof) andr in order just after the
call tor. After r succeeds and control returnsptiche frames of the calls i9andr are
still on the stack. The Mercury abstract machine thus hasregisters to point to the
nondet stackmaxfr always points to the top frame, whitirfr points to the frame
of the currently executing call. (If the currently execugticall uses the det stack, then
curfr points to the frame of its most recent ancestor that usesathéet stack.)

There are two kinds of frames on the nondet stamilinary andtemporary An
ordinary frame is allocated for a procedure that can sucoewd than once, i.e. whose
determinism is nondet or multi. Such a frame is equivalerth® combination of a
choice point and an environment in a Prolog implementatesed on the WAM [10].
Ordinary nondet stack frames have five fixed slots and a VMarrabmber of other slots.
The other slots hold the values of the variables of the praeedncluding its argu-
ments; these are accessed via offsets feamrfr. The five fixed slots are:

previfr The previous frame slot points to the stack frame immedidtelow this one.
(Both stacks grow higher.)

redoip The redo instruction pointer slot contains the address efitistruction to
which control should be transferred when backtracking {otavithin) this call.



redofr The redo frame pointer slot contains the address that shmukkssigned to
curfr when backtracking jumps to the address intkhéoip slot.

succip The success instruction pointer slot contains the addifeb® énstruction to
which control should be transferred when the call of thislsfaame succeeds.

succfr The success frame pointer slot contains the address ofdbk same that
should be assigned turfr when the call owning this stack frame succeeds; this
will be the stack frame of its caller.

Theredoip andredofr slots together constitute the failure continuation, witlie
succip andsuccfr slots together constitute the success continuation. lexhenple
above, botly’s andr’s stack frames have the addresg@fstack frame in theisuccfr
slots, while theirsuccip slots point to the instructions i after their respective calls.

The compiler converts multi-clause predicate definitiams idisjunctions. When
executing in the code of a disjunct, thedoip slot points to the first instruction of the
next disjunct or, if this is the last disjunct, to the addrekthe failure handler whose
code removes the top frame from the nondet stack, setsr from the value in the
redofr slot of the frame that is now on top, and jumps to the addreitsiredoip slot.
Disjunctions other than the outermost one are implemensatyuemporary nondet
stack frames, which have onptevfr, redoip andredofr slots [8].

The stack slot assigned to a variable contains garbagedtf@rariable is instanti-
ated; afterward, it contains the value of the variable. &the compiler knows the state
of instantiation of every visible variable at every progrpoint, the code it generates
will never look at stack slots containing garbage. This nsghat backtracking does not
have to reset variables to unbound, which in turn means tieatercury implementa-
tion does not need a trail.

3 Tabling in Mercury

In tabling systems, some predicates are decléabtbdand use tabled resolution for
their evaluation; all other predicates aren-tabledand are evaluated using SLD. Mer-
cury also follows this scheme, but it supports three difieferms of tabled evaluation:
memoization (caching), loop checking, and minimal model@ation. We concentrate
on the last form, which is the most interesting and subsuhesther two.

The idea of tabling is to remember the first invocation of eealh (henceforth re-
ferred to as generatoj and its computed results in tables (inall tableand aranswer
tablerespectively), so that subsequent identical calls (retetw as theonsumerscan
use the remembered answers without repeating the congputitercury programmers
who are interested In Compu“ng the a.r-:— pred path(int::in, int::out) is nondet.
swers of tabled predicate calls according- pragma minimalmodel(path/2).
to the perfect modekemantics can use th€path(a, B) :- edge(a, B).

‘minimal model’ pragma. An example iglpathA. B) :- edge(d. C), path(C, B).
the usuapath predicate on the right.

Predicates witlhinimal model pragmas are required to satisfy two requirements
not normally imposed on all Mercury predicates. The firsuisgment is that the set of
values computed by the predicate for its output argumerrisigpletely determined by
the values of the input arguments. This means that the eedicust not do I/O; it must




also bepure, i.e., free of observable side-effects such as updatingahe of a global
variable through the foreign function interface. The setmnthat each argument of a
minimal model predicate must be either fully input (groundadl and at return) or fully
output (free at call, ground at return). In other words, ipéiytinstantiated arguments
and arguments of unknown instantiation are not allowed. g/ restriction affects
the implementation of tabling in Mercury is discussed infllwing section.

When a call to a minimal model predicate is made, the prograst sheck whether
the call exists in the call table or not. In SLG terminology; fhis takes place using the
NEW SUBGOAL operation. If the subgoal is new, it is entered in the table and this
call, as the subgoal’s generator, will UBROGRAM CLAUSE RESOLUTIONtO derive
answers. The generator will use tkew ANSWER operation to record each answer it
computes in a global data structure calleddhewer tablef s. If, on the other hand, (a
variant of)s already exists in the table, this call is a consumer and ed#iblve against
answers from the subgoal’'s answer table. Answers are fétoansumer one at a time
throughANSWER RETURNoOperations.

Because in general it is not knovenpriori how many answers a tabled call will
get in its table, and because there can be mutual dependdratigeen generators and
consumers, the implementation requires: (a) a mechanisetdim (or reconstruct) and
reactivate the execution environments of consumers ingtietare no more answers for
them to consume, and (b) a mechanism for returning answexnsumers and deter-
mining when the evaluation of a (generator) subgoabispletei.e. when it has pro-
duced all its answers. As mentioned, we chose the CAT sugpgresumption mech-
anism as the basis for Mercury’s tabling implementationweleer, we had to adapt it
to Mercury and extend it in order to handle existential gifization and negated con-
texts. For completion, we chose thmeremental completioapproach described in [6].
A subgoal can be determined to be complete if all programselaasolution has fin-
ished and all instances of this subgoal have resolved agdirterived answers. How-
ever, as there might exist dependencies between subdoadg have to be taken into
account by maintaining and examining the subgoal deperydgaph, finding a set of
subgoals that depend only on each other, completing theethteg and then repeating
the process until there are no incomplete subgoals. We tefhiese sets of subgoals
asscheduling componentshe generator of some subgoal (typically the oldest) in the
component is called the componerné&ader.

4 The Implementation of Tabling in Mercury

4.1 The tabling transformation and its supporting data structures

Mercury allows programmers to use impure constructs toemgint a pure interface,
simply by making a promise to this effect. The tabling impéstation exploits this
capability. Given a pure predicate suchpash/2, a compiler pass transforms its body
by surrounding it with impure and semipure code as shown gn &i(impure code
may write global variables; semipure code may only read jhbiote that the compiler
promises that the transformed code behaves as a pure gaa tke side-effects inside
are not observable from the outside.



As mentioned, the arguments of tabled procedures musthesr &idly input or fully
output. This considerably simplifies the implementatiorcaif tables. SLG resolution
considers two calls to represent the same subgoal if theyaaiants i.e., identical up
to variable renaming. In Mercury, this is the case if and ahtize two calls have the
same ground terms in their input argument positions, bectesoutput arguments of
a call are always distinct variables. Conceptually, thé tedlle of a predicate wit
input arguments is a tree with+ 1 levels. Leveld contains only the root node. Each
node on level corresponds to a value of the first input argument that theipaee has
been called with; in general, each node on lgvebrresponds to a combination of the
values of the firsk input arguments that the predicate has been called withs €aoh
node on leveh uniquely identifies a subgoal.

The transformed body of a minimal model predicate startsookihg up the call
table to see whether this subgoal has been seen before @ivert.a predicate declared
as in the code shown in Fig. 1, the minimal model tabling ti@msation inserts the
code shown on the same figure at the start of its procedure body

;- pred p(int::in, string::in, int::out, tl::in, t2::out) is nondet.
:- pragma minimal.model(p/5).

p(Inl, In2, Outl, In3, Out2) :-

pickup_call_table_root_for_p._5(CallTableRoot),

impure lookup-insert_int(CallTableRoot, Inl, CallNodel),
impure lookup.insert_string(CallNodel, In2, CallNode2),
tmpure lookup-insert_user(CallNode2, In3, CallNode3),
impure subgoal_setup(CallNode3, Subgoal, Status)

Fig. 1. Type-directed program transformation for arguments dethballs

We store all the information we have about each subgoasubgoal structureWe
reach the subgoal structure of a given subgoal through agramthe subgoal’s level
n node in the call table. The subgoal structure has the fotigwight fields (cf. Fig. 2),
which we will discuss as we go along: 1) the subgoal’s stataw/(activeor completg;

2) the chronological list of the subgoal’s answers compstedar; 3) the root of the

subgoal’s answer table; 4) the list of the consumers of tiligjeal; 5) the leader of the
scheduling component this subgoal belongs to; 6) if thigyeabis the leader, the list
of its followers; 7) the address of the generator’s framehanrtondet stack; and 8) the
address of the youngest nondet stack frame that is an ancddtoth this generator

and all its consumers; we call this the nearest common aoTo@$CA).

' (size, num_entries, etc) Trie Roo Subgoal Structure
Status :
Answer List
Cal | Tabl eRoot Answer Table
Consumer List
Cal | Node2 Subgoal’s Leader
Cal | Node1 Hash Table (for values of In2 Follower List
Cal I Node3 Gener nondet Addr
NCA nondet Addr
Hash Table (for values of In1) Trie (for values of In3)

Fig. 2. Data structures created for the calls of predigate



In the code of Fig. 3,
CallTableRoot,CallNodel,
CallNode2 and CallNode3

path(A, B)
promise_pure (
pickup_call_table_root_for_path_2(CallTableRoot),
impure lookup_insert_int(CallTableRoot, A, CallNodel),
impure subgoal_setup(CallNodel, Subgoal, Status),

( % switch on ‘Status’

Status = new,

(
impure mark_as_active(Subgoal),
% original body of path/2 in the two lines below
edge(A, C),
( C =B ; path(C, B) ),
semipure get_answer_table(Subgoal, AnsTabRoot),
impure lookup_insert_int(AnsTabRoot, B, AnsNodel),
impure answer_is_not_duplicate(AnsNodel),
impure new_answer_block(Subgoal, 1, AnsBlock),
impure save_answer (AnsBlock, 0, B)

are all pointers to nodes
in the call tree at levels
0, 1, 2 and 3 respectively;
see Fig. 2.CallTableRoot

points to the global vari-
able generated by the Mer;
cury compiler to serve as the
root of the call table for this
procedure. This variable is

e e . . . impure completion(Subgoal),
initialized to NULL, indicat- fail

ing no child nodes yet. The|

first call to p/5 will cause Status = complete,

semipure
semipure

return_all_answers (Subgoal, AnsBlock),
restore_answer (AnsBlock, 0, B)

lookup-insert_int to cre-
ate a hash table in which ev;
ery entry is NULL, and make
the global variable point to
it. The lookup_insert_int
call will then hashIni, cre-
ate a new slot in the indicatedrFig. 3. Example of the tabling transformation on path/2
bucket (or in one of its over-

flow cells) and return the address of the new slat@lNode1. At later calls, the hash
table will exist, and by then we may have seen the then cuuane ofIn1 as well;
lookup_insert_int will perform a lookup if we have and an insertion if we have.not
Either way, it will return the address of the slot selected hy. The process then gets
repeated with the other input arguments. (The predicateg lvalled are different be-
cause Mercury uses different representations for diftesgres. For example, integers
are hashed directly but we hash the characters of a strin@srazldress.)

User-defined type&/alues of these types consist of a function symbol applieztto

or more arguments. In a strongly typed language such as Methe type of a variable
directly determines the set of function symbols that vdei@an be bound to. The data
structure we use to represent a function symbol from usimnetetypes is therefore a
trie, a data structure which has extensively been used in tapéteras [4]. If the func-
tion symbol is a constant, we are done. If it has argumergs,bokup_insert_user
processes them one by one the same way we process the argofiengidicates, using
the slot selected by the function symbol to play the role efrtiot. In this way, the path
in the call table from the root to a leaf node representingvargsubgoal has exactly
one trie node or hash table on it for each function symbolénitiput arguments of the
subgoal; their order is given by a preorder traversal oféHaaction symbols.
Polymorphic typesThis scheme works for monomorphic predicates because ht eac
node of the tree, the type of the value at that node is fixed th@dype determines
the mechanism we use to table values of that type (integargstr float hash table
for builtin types, a trie for user-defined types). For polyptuc predicates (whose sig-
natures include type variables) the caller passes exttarangts identifying the actual

Status = active,
impure suspend(Subgoal, AnsBlock),
semipure restore_answer (AnsBlock, 0, B)
)
).




types bound to those type variables. We first table theseveggts, which are terms of
a builtin type. Once we have followed the path from the roatlevel of the last of
these arguments, we have arrived at what is effectivelydbeaf the table for a given
monomorphic instance of the predicate’s signature, andraesed as described above.

4.2 The tabling primitives

Thesubgoal_setup primitive ensures the presence of the subgoal’s subgaesitste.

If this is a new subgoal, theta11Node3 will point to a table node containing NULL.
In that casesubgoal_setup will (a) allocate a new subgoal structure, initializing its
fields to reflect the current situation, (b) update the tablderpointed to bgal1Node3

to point to this new structure, and (c) return this same goiasSubgoal. If this is not
the first call to this procedure with these input argumemisntallNode3 will point

to a table node that contains a pointer to the previouslyatkr subgoal structure, so
subgoal _setup Will just return this pointer.

subgoal_setup returns not jussubgoal, but also the subgoal’s status. When first
created, the status of the subgoal is setdw It becomesctivewhen a generator has
started work on it and becomesmpleteonce it is determined that the generator has
produced all its answers.

What the transformed procedure body does next depends sultigeal’s initial sta-
tus. If the status iactiveor completethe call becomes one of the subgoal’s consumers.
If it is new the call becomes the subgoal’s generator and executesitfieab body of
the predicate after changing the subgoal’s statusctove When an answer is gener-
ated, we check whether this answer is new. We do this by gginganswer_tableto
retrieve the root of the answer table from the subgoal sirectind inserting the output
arguments into this table one by one, as we inserted the arguiments into the call
table. The node on the last level of the answer table thusiehidgdentifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table se-
lected by the output argument values is NULL, then this ifitls¢ time we have com-
puted this answer for this subgoal, and the call succeed®rdise it fails. (To make
later calls fail,answer_is_not_duplicate sets the tip to non-NULL on success.) We
thus get to calhew_answer_block only if the answer we just computed is new.

new_answer_block adds a new item to the end of the subgoal’s chronological list
of answers, the new item being a fresh new memory block witmrdor the given
number of output arguments. The calliew_answer_blockis then followed by a call
to save_answer for each output argument to fill in the slots of the answer kloc

When the last call teave_answer returns, the transformed code of the tabled pred-
icate succeeds. When backtracking returns control to tiiedgredicate, it will drive
the original predicate body to generate more and more ass¥eprograms with a fi-
nite perfect model, the answer generation will eventuabtp sand execution will enter
the second disjunct, which invokes thempletion primitive. This will make the an-
swers generated so far for this subgoal available to anyurness that are waiting for
such answers. This may generate more answers for this suibtheeoriginal predicate
body makes a call, directly or indirectly, to this same swdgbhecompletion prim-
itive will drive this process to a fixed point (see Sect. 4.8l shen mark the subgoal



ascompleteHaving already returned all answers of this subgoal froefitist disjunct,
execution fails out of the body of the transformed predicate

If the subgoal is initialljcompletewe callreturn_all_answers, which succeeds
once for each answer in the subgoal’s chronological listnsfagers. For each answer,
calls torestore_answer pick up the output arguments put theredawe_answer.

If the initial status of the subgoal iactive then this call is a consumer but the
generator is not known to have all its answers. We therefalt¢te suspend primitive.
suspend has the same interface asturn_all_answers, but its implementation is
much more complicated. We invoke thespend primitive when we cannot continue
computing along the current branch of the SLD tree. The mask bf the suspension
operationis therefore to record the state of the curremidiraf the SLD tree to allow its
exploration later, and then simulate failure of that braratlowing the usual process of
backtracking to switch execution to the next branch. Sametater, thecompletion
primitive will restore the state of this branch of the SLDeréeed the answers of the
subgoal to it, and let the branch compute more answers ihit ca

4.3 Suspension of consumers

The suspend primitive starts by creating aonsumer structurand adding it to the
current subgoal’s list of consumers. This structure haesetfields: a pointer to this sub-
goal’s subgoal structure (availablednspend’s Subgoal argument), an indication of
which answers this consumer has consumed so far, and the stave of the consumer.
Making a copy of all the data areas of the Mercury abstractinaqdet stack, non-
det stack, heap and registers) would clearly be sufficier¢¢ord the state of the SLD
branch, but equally clearly it would also be overkill. To inize overhead, we want
to record only the parts of the state that contain needednrdtion which can change
between the suspension of this SLD branch and any of its gubséresumptions. For
consumer suspensions, the preserved saved state is assfollo
RegistersThe special purpose abstract machine registersfir, curfr, the det stack
pointersp, and the return address registaccip) all need to be part of the saved state,
but of all the general purpose machine registers used fanpater passing, the only one
that contains live data and thus needs to be saved is the oteriogSubgoal.

Heap With Mercury’s conservative collector, heap space is reced only by garbage
collection and never by backtracking. This means that a tertihe heap will naturally
hang around as long as a pointer to it exists, regardless ethghthat pointer is in a
current stack or in a saved copy. Moreover, in the absencesifuttive updates, this
data will stay unchanged. This in turn means that, unlike aMAffased implementation
of CAT, Mercury’s implementation of minimal model tablinpes not need to save or
restore any part of the heaphis is a big win, since the heap is typically the largeshare
The tradeoff is that we need to save more data from the staeksuse the mapping
from variables to values (the current substitution) isesticentirely in stack slots.

Stacks The way Mercury uses stack slots is a lot closer to the rungigséems of im-
perative languages than to the WAM. First of all, there ardimis between variables
because the mode system does not allow two free variablesitnified. Binding a vari-
able to a value thus affects only the stack slot holding thi&alge. Another difference
concerns the timing of parameter passing. If a predigait@kes the calj(4), and the



definition ofq has a clause with heag(B), then in PrologA would be unified withB

at the time of the call, and any unification insigi¢hat bindsB would immediately up-
dateA in p's stack frame. In Mercury, by contrast, there is no inforioraflow between
caller and callee except at call and return. At call, theecgluts the input arguments
into abstract machine registers and the callee picks themtugturn, the callee puts
the output arguments into registers and the caller picks tiye. Each invocation puts
the values it picks up into a slot of its own stack frame whereitt executes a call. The
important point is that the only code that modifies a stackn&ar is the code of the
procedure that creatett.

CAT saves the frames on the stacks between the stack frarhe generator (ex-
cluded) and the consumer (included), and uses the WAM wrashive and restore ad-
dresses and values of variables which have been bound $ieceréation of a con-
sumer’s generator. Mercury has no variables on its heayithuiwut a mechanism like
the trail to guide the selective copying of stack slots whidght change values, it must
make sure that suspension saves informatiailistack frames that could be modified
between the suspension of a consumer and its resumptios ggiriterator. The deep-
est frame on the nondet stack that this criterion requires gave is the frame of the
nearest common ancest@CA) of the consumer and the generator. We find the NCA
by initializing two pointers to point to the consumer and getor stack frames, and
repeatedly replacing whichever pointer is higher with shecfr link of the frame it
points to, stopping when the two pointers are equal.

Two technical issues deserve to be mentioned. Note thanhustsave the stack
frame of the NCA because the variable bindings in it may hdanged between the
suspension and the resumption. Also, it is possible for gagest common ancestor of
the generator and consumer to be a procedure that lives alettstack. The expanded
version of this paper [8] gives examples of these situafiorivates the implementa-
tion alternatives we chose to adopt, and argues for the @oess of saving (only) this
information for consumers.

4.4 Maintenance of subgoal dependencies and their influenca suspensions

We have described suspension as if consumers will be sagdualy by their nearest
generator. This is indeed the common case, but as explairgelition 3 there are also
situations in which subgoals are mutually dependent andatdpe completed on an
individual basis. To handle such cases, Mercury maintagtack-based approximation
of dependencies between subgoals, in the form of schedatingponents. For each
scheduling component (a group subgoals that may dependcbrodzer), itdeaderis
the youngest generat6ity, for which all consumers younger thé#y, are consumers of
generators that are not older th@n,. Of all scheduling components, the one of most
interest is that on the top of the stack. This is because itdsohe whose consumers
will be scheduled first. We call its leader therrent leader

The maintenance of scheduling components is reasonabbjeeffi Information
about the leader of each subgoal and the leadl@i®versis maintained in the subgoal
structure (cf. Fig. 2). Besides creation of a new generatorfiich case the generator
becomes the new current leader with no followers), thisrimfation possibly changes
whenever execution creates a consumer suspension. If tisgiicer's generato€;, is



the current leader or is younger than the current leadehange of leaders takes place.

If G is older than the current leadercauphappens( becomes the current leader, and

its scheduling component gets updated to contain as itswWells the subgoals of all
generators younger thar. In either case, the saved state for the consumer suspension
will be till the NCA of the consumer and the current leadeiisideneralizes the scheme
described in the previous section.

Because a coup can happen even after the state of a consusrerdrasaved, we
also need a mechanism to extend the saved consumer stagesieEhanism we have
implemented consists of extending the saved state of ablooers upon change of
leaders. When a coup happens, the saved state of all fodg@@nsumers and genera-
tors) of the old leader is extended to the stack frame of thé Ceach follower and
the new leader. Unlike CAT which tries to share the trail heand local stack segments
it copies [2], in Mercury we have not (yet) implemented shgof the copied stack seg-
ments. It is our intention to implement and evaluate such ehaism. However, note
that the space problem is not as severe in Mercury as it is i, Bécause in Mercury
there is no trail and no information from the heap is ever edpivhich means that heap
segments for consumers are naturally shared.

On failing back to a generator which is a leader, schedulingnswers to all its
followers will take place, as described below. When the dalieg component gets
completed, execution will continue with the immediatelgiel scheduling component,
whose leader will then become the current leader.

4.5 Resumption of consumers and completion

The main body of theompletion primitive consists of three nested loops: over all
subgoals in the current scheduling comporgntver all consumers of these subgoals,
and over all answers to be returned to those consumers. Teeicdhe body of the
nested loops arranges for the next unconsumed answer tduraee to a consumer
of a subgoal inS. It does this by restoring the stack segments saved bgibpend
primitive, putting the address of the relevant answer blimtt the abstract machine
register assigned to the return valuesakpend, restoring the other saved abstract ma-
chine registers, and branching to the return address storegspend’s stack frame.
Each consumer resumption thus simulates a return from thevcaispend.

Since restoring the stack segments from saved states afroens clobbers the state
of the generator that does the restoring (the leade¥)pthe completion primitive
first saves the leader’'s own state, which consists of sati@gdondet stack down to the
oldest NCA of the leader generator and any of the consumechédules, and saving
the part of the det stack allocated since the creation ofrtbiglet frame. To provide
the information required for the second part of this opergtive extend every ordinary
nondet stack frame with a sixth slot that contains the addvéthe top of the det stack
at the time of the nondet stack frame’s creation.

Resumption of a consumer essentially restores the savadibod the SLD search
tree, but restoring its saved stack segméanmttct is not a good idea. The reason is that
leaving theredoip slots of the restored nondet stack frames unchanged resumhes
just the saved branch of the SLD search tree, but also thertdepgoints of all the
branches going off to its right. Those branches have beelv@dimmediately after



the suspension of the consumer, because suspension isgitvelating the failure of

the consumer, thus initiating backtracking. When we resarmensumer to consume
an answer, we do not want to explore the exact same altegsatiyain, since this could
lead to an arbitrary slowdown. We therefore replace alltb&oips in saved nondet
stack segments to make them point to the failure handlerdmruhtime system. This

effectively cuts off the right branches, making them faihvediately. Given the choice
between doing this pruning once when the consumer is susdandnce for each time
the consumer is resumed, we obviously choose the former.

This pruning means that when we restore the saved state afsue®r, only the
success continuations are left intact, and thus the onlgdsatack frames the restored
SLD branch can access are those of the consumer’s ancestyrstack frames that
are not the consumer’s ancestors have effectively beerl sencerestored in vain.

When a resumed consumer has consumed all the currenthalaleatnswers, it
fails out of the restored segment of the nondet stack. Wengeréo get control when
this happens by setting thedoip of the very oldest frame of the restored segment to
point to the code of theompletion primitive. Whencompletion is reentered in this
way, it needs to know that the three-level nested loop hasdir started and how far it
has gone. We therefore store the state of the nested looplabal gecord. When this
state indicates that we have returned all answers to alleoness of subgoals i§, we
have reached a fixed point. At this time, we mark all subgoaisascompleteand we
reclaim the memory occupied by the saved states of all toeisemers and generators.

4.6 Existential quantification

Mercury supports existential quantification. This consttris usually used to check
whether a component of a data structure possesses a spemjiferty as in the code:

:— pred list_contains_odd number (list(int)::in) is semidet.
list_contains_odd_number (List) :- some [N] (member(N, List), odd(N)).

Typically the code inside the quantification may have moentbne solution, but the
code outside only wants to check whether a solugagistswithout caring about the
number of solutions or their bindings. One can thus converuli or nondet goal into
a det or semidet goal by existentially quantifying all itdfmut variables. Mercury im-
plements quantifications of that form using what we cafloanmitoperation, which
some Prologs call anceoperation. The operation savesxfr when it enters the goal
and restores it afterward, throwing away all the stack fathat have been pushed onto
the nondet stack in the meantime. The interaction with satédirises from the fact that
the discarded stack frames can include the stack frame afergtr. If this happens,
the commit removes all possibility of the generator beingdtracked into ever again,
which in turn may prevent the generation of answers and cetiopl of the correspond-
ing subgoal. Without special care, all later calls of thddgaal will become consumers
who will wait forever for the generator to schedule the retoftheir answers.

To handle such situations, we introduce of a new stack whielcall thecut stack
This stack always has one entry for each currently activetexiially quantified goal;
new entries are pushed onto it when such a goal is enteredagomebgd when that goal
either succeeds or fails. Each entry contains a pointerisi aflgenerators. Whenever



a generator is created, it is added to the list in the entmectlly on top of the cut stack.
When the goal inside the commit succeeds, the code that pepsit stack entry checks
its list of generators. For all generators whose statustismmpletewe erase all trace
of their existence and reset the call table node that pointhé generator’s subgoal
structure back to a null pointer. This allows later callshattsubgoal to become new
generators.

If the goal inside the commit fails, the failure may have bdae to the simulated
failure of a consumer inside that goal. When the state oftine@mer is restored, it may
well succeed, which means that any decision the program g taken based on the
initial failure of the goal may be incorrect. When the godaide the commit fails, we
therefore check whether any of the generators listed in thstack entry about to be
popped off have a status other thmomplete Any such generator must have consumers
whose failure may not be final, so we throw an exception ingyeafce to computing
incorrect results. Note that this can happen only when thdde of the incomplete
generator’s scheduling component is outside the existiemiiantification.

4.7 Possibly negated contexts

The interaction of tabling with cuts and Prolog-style négaiis notoriously tricky.
Many implementation papers on tabling ignore the issuegatteer, considering only
the definite subset of Prolog. An implementation of tabling Mercury cannot duck
the issue. Mercury programs rely extensively on if-theseg] and if-then-elses involve
negation: 1f C then T else E”is semantically equivalentttC' A T) v (—-3C A E).
Of course, operationally the condition is executed onlyeorithe conditionC' is a
possibly negated context: it is negated only if it has notsahs. Mercury implements
if-then-else using &oft cut if the condition succeeds, it cuts away the possibility of
backtracking to the else part only (the condition may sudeeere than once).

If C fails, execution should continue at the else part of thééfatelse. This poses
a problem for our implementation of tabling, because thiefaiof the condition does
not necessarily imply that' has no solution: it may also be due to the suspension of a
consumer called (directly or indirectly) somewhere ingijas in the code below.

pC...) = t,C.), Cif (..., t.(..), ... ) then ... else ... ), ...

If t. suspends and is later resumed to consume an answer, thé@ontiy evaluate to
true. However, by then the damage will have been done, bewgisvill have executed
the code in thelse part.

We have not yet implemented a mechanism that will let us cdenghe correct
answer in such cases, because any such mechanism woulcheegduility to transfer
the “generator-ship” of the relevant subgoal from the getwerof t to its consumer,
or something equivalent. However, \lwaveimplemented a mechanism that guarantees
that incorrect answers will not be computed. This mechaisstine possibly-negated-
context stackor pneg stacKor short. We push an entry onto this stack when entering
a possibly negated context such as the condition of an if-thee. The entry contains
a pointer to a list of consumers, which is initially empty. 8hcreating a consumer,
we link the consumer into the list of the top entry on the priagls When we enter
the else part of the if-then-else, we search this list logkor consumers that are sus-
pended. Since suspension simulates failure without nadssnplying the absence of



further solutions, we throw an exception if the search finds$hsa consumer and abort
execution. If not, we simply pop the entry of the pneg stack&.algo perform the pop on
entry to the then part of the if-then-else. Since in that tlasee is no risk of committing
to the wrong branch of the if-then-else, we do so without Inglat the popped entry.

There are two other Mercury constructs that could computsngrianswers if the
failure of a goal does not imply the absence of solutionstfdrhe first is negation. We
handle negation as a special case of if-then-elggis equivalentto 1f G then fail
else true”. The other is the generic all-solutions primititailtin_aggregate,
which serves as the basic building block for all of Mercumfssolutions predicates.
The implementation duiltin_aggregate uses afailure driven loop. To ward against
builtin_aggregate(Closure, ...) mistaking the failure otall(Closure) due
to a suspension somewhere insitiesure as implying the absence of solutions to
Closure, We treat the loop body as the condition of an if-then-else we surround it
with the code we normally insert at the start of the conditiod the start of the else
part (see [8] for the details).

Entries on both the cut stack and the pneg stack contain dli@goints to the stack
frame of the procedure invocation that created them, wisicli course also responsible
for removing them. When saving stack segments or extendiegsstack segments, we
save an entry on the cut stack or the pneg stack if the noratek flame they refer to
is in the saved segment of the nondet stack.

5 Performance Evaluation

We ran several benchmarks to measure the performance ofiensith tabling sup-
port, but space limitations allow presenting only some efttere.

Overhead of the grade with full tabling suppdife compiled the Mercury compiler in
two grades that differ in that one supports minimal modelingh the form of tabling
discussed in this paper, by including the cut and pneg stautshe extra slot on nondet
stack frames, and while the other, lacking these extrapatgponly the other forms of
tabling (memoization and loop checking). Enabling supfmrminimal model tabling
without using it (the compiler has no minimal model predéstincreases the size of
the compiler executable by about 5%. On the standard ber&hiask for the Mer-
cury compiler, compiling six of its own largest modules, rimgvto a minimal model
grade with full tabling support slows the compiler down bypab25%. (For compari-
son, enabling debugging leads to a 455% increase in codarsiza 135% increase in
execution time.) First of all, it should be mentioned thayipg this 25% cost in time
happens only if the user selects a grade with minimal modkihigasupport: programs
that do not use minimal model tabling at all can use the defaul fast . gc grade and
thus not pay any cost whatsoever. Moreover, this 25% is [mgtzan upper limit. (See
also the results in Table 3 which overall show less than 19&ttead.) Virtually all of
this cost in both space and time is incurred by the extra caglbave to insert around
possibly negated contexts; the extra code around comndtthalarger size of nondet
stack frames have no measurable overheads (see the dajp Ihj@ had an analysis
that could determine that tabled predicates are not indo{deectly or indirectly) in
a possibly negated context, this overhead could be totatlidad for that context. We
are now working on such an analysis.



Table 1. Times (in secs) to execute various versions of transitigsurie

chain cycle
benchmarksizg iter|| XSB|XXX |YAP|Mercury||XSB|XXX |YAP|Mercury
telr +- 4K|200|0.62 0.510.28 0.58/0.63 0.520.28§ 0.59
telr +- 8K[200Q)|1.24 1.050.62 1.27(1.27 1.070.62 1.30

ter +- 16K|20Q|2.57 2.151.5] 2.47)|2.62 2.121.48 2.6]
tcr +-  |32K|200|5.25 4.413.78 5.23|5.20 4.443.78 5.07
ter —- 2K| 1|/ 2.58 2.491.25 3.20|6.22 6.302.88 6.24
te_rr —— 2K| 1)} 2.21f 2.042.94 10.27|6.39 5.856.00 27.48

Comparison against other implementations of tabliWg compared the minimal model
grade of Mercury (using rotd-06-10-2005, based on CAT) regjaXSB (2.7.1, based
on the SLG-WAM), the XXX system (derived from XSB but based @HAT) and
YAP (version in CVS at 28 July 2005, based on SLG-WAM). XSB &xX use local
scheduling6] in the default configuration while YAP usédmtched schedulingvier-
cury’s scheduling strategy is similar but not identical &adhed scheduling. All bench-
marks were run on an IBM ThinkPad R40 laptop with a 2.0 GHz isemt CPU and
512 Mb of memory running Linux. All times were obtained by nimg each benchmark
eight times, discarding the lowest and highest values, aecdhging the rest.

The first set of benchmarks consists of left- and right-reiwerversions of transitive
closure. In each case, the edge relation is a chain or a ¢dpcdechain of sizen, there
aren — 1 edges of the fornt — k£ + 1 for 0 < k < n; in a cycle of sizer, there is also
an edger — 0. We use two query forms: the query with the first argumenttiapa the
second outputH-) and the open query with both arguments outpu) ( The number
of solutions is linear in the size of the data for thequery and quadratic for-. The
second set consists of versions of the same generatiorcptediith full indexing (i) or
Prolog-style first-argument indexing only (p), with the satwo kinds of queries. Each
table entry shows how long it takes for a given system to rersgiecified query on the
specified datéter times (iter=50 for thesg benchmarks). The tables are reset between
iterations. In Tables 1 and 2, benchmarks use a failure wtivep or its equivalent to
perform the iterations, while in Table 3 they use a tail-retue driver predicate.

Table 2. Times (in secs) to execute various versions of same geoerati

benchmark XSB| XXX| YAP|Mercury|
sgi+- 121 1.32 0.34 1.05
sgi-- 3.53 3.89 1.07 2.43
Sg p+- 83.5¢ 58.17134.54 32.14
sg p-- 237.58161.0877.63 92.64

The rows for ther— query on left recursive transitive closure show all runsne@
be linear in the size of the data, as expected. Also, on leftrsdon, regardless of query,
YAP is fastest, and XSB, XXX and Mercury are pretty similan @ght recursion,
Mercury is slower than the other systems due to saving aridrieg stack segments
of consumers, and having to do so more times due to its diffesgheduling strategy
(YAP doesn’t do save/restore). It is unfortunate that niatytems implement the same
scheduling strategy. However, local evaluation (i.e. tpasing the return of answers
to the generator until the subgoal is complete) is not coibjgatvith the pruning that



Mercury’s execution model requires in existential quagaifions, a construct not prop-
erly handled in Prolog systems with tabling. On the same igeiioa (sg) benchmark,
in which consumer suspensions are not created (varianbsiggre only encountered
when the subgoals are completed), Mercury is clearly mustiefahan XSB and XXX,
although it is still beaten by YAP in three cases out of fowoTeasons why Mercury’s
usual speed advantage doesn’'t materialize here are th#tgd¢ benchmarks spend
much of their time executing tabling’s primitive operatipmhich are in handwritten C
code in all four systems, and (2) the Prolog systems can ez¢be memory allocated
by an iteration by resetting the heap pointer, whereas ircMgrthis can be done only
by garbage collection. (Although the benchmark program®atalog, the all-solutions
predicate used by the benchmark harness allocates heg) cell

Table 3. Times (in secs) to execute some standard untabled Prolaiivemks

benchmark [[cqueehcrypt deriv] nreV] primes gsor{queenquery tak total
iterations 60K| 30K|500K|300K| 150K|300K| 2K|100K| 1K
Mercury plain 1.92 544 561 7.99 6.43 6.37 4.77 0.70 0.52 39.8
Mercury tableqd 3.2 7.17 4.9 7.0§ 8.80 7.41 5.83 0.89 1.8Q 47.2

YAP 9.1 9.14 4.08 4.53 20.8915.3512.4Q 6.4412.5Q 94.9
XXX 15.2710.8 8.08 6.94 31.6421.7222.0917.4617.3Q| 151.4
XSB 23.6417.2311.5816.71thrashes32.83 34.5629.6524.05(> 190.3

Table 3 shows the performance of the same four systems orstandard Prolog
benchmarks that do not use tabling, taken from [7]. Mercsigféarly the fastest system
by far, even when minimal model tabling is enabled but notuftes beaten only on
nrev and deriv, which sperall their time in predicates that are tail recursive in Prolog
but not in Mercury.

Itis very difficult to draw detailed conclusions from theseed| benchmarks, but we
can safely say that we succeeded in our objective of coratémjrthe costs of tabling
on the predicates that use tabling, reducing the performahantabled predicates by
at most 25%. We can confidently expect Mercury to be muchrfésa® Prolog systems
on programs in which relatively few consumer suspensioagacountered. The speed
of Mercury relative to tabled Prolog systems m@al tabled programs will depend on
what fraction of time they spend in tabled predicates.

Our most promising avenues for further improvement of taplin Mercury are
clearly (1) improving the speed of saving and restoring sasipns and (2) implement-
ing a scheduling strategy that reduces the number of suispsrend resumptions.

6 Concluding Remarks

Adapting the implementation of tabling to Mercury has beearhallenge because the
Mercury abstract machine is very different from the WAM. Wavl based our imple-
mentation on CAT because it is the only recomputation-fgr@ach to tabling that
does not make assumptions that are invalid in Mercury. Hewewen CAT required
significant modifications to work properly with Mercury’sask organization, its mech-
anisms for managing variable bindings, and its type-speddta representations. We
have described all these in this paper as well as describiaghew mechanisms, the



cut and the pneg stack, which allow for safe interaction bfig with language con-
structs such as if-then-else and existential quantifinafibese constructs are either not
available or not properly handled in other tabled LP systems

In keeping with Mercury’s orientation towards industr&glale systems, our design
objective was maximum performance on large programs agintggsome tabled pred-
icates, not maximum performance on the tabled predicagasgalves. The distinction
matters, because it requires us to make choices that mimithé&impact of tabling on
non-tabled predicates even when these choices slow dowsdtakecution. We have
been broadly successful in achieving this objective. Ssupgort for tabling is optional,
programs that do not use it are not affected at all. Even ignamos that do use tabling,
non-tabled predicates only pay the cost of one new mechatigrone ensuring the
safety of interactions between minimal model tabling anghtien.

The results on microbenchmarks focusing on the performahtiee basic tabled
primitives themselves show tabling in Mercury to be quitmpetitive with that of other
high-performance tabling systems. It is faster on some lrmacks, slower on some
others, and quite similar on the rest, even though Mercurseatly lacks some obvi-
ous tabling optimizations, such as sharing stack segmés&®ns among consumers.
How the system behaves on real tabled applications, writteercury rather than
Prolog, remains to be seen. Performing such a comparisossadifferent languages
is not a trivial task because many applications of tablingrofely on features (e.g.,
inspection of tables during runtime or dynamic modificasiaf the Prolog database)
which are not available in Mercury. But one should not ungdiémeate either the diffi-
culty or the importance of adding proper tabling in a safe Wwawg truly declarative,
high-performance LP system and the power that this brings to
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