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Abstract

The rate at which computers are becoming faster at sequential ex-

ecution has dropped significantly. Instead parallel processing power is

increasing, and multicore computers are becoming more common. Auto-

matically parallelising programs is becoming much more desirable. Paral-

lelising programs written in imperative programming languages is difficult

and often leads to unreliable software. Parallelising programs in declar-

ative languages is easy, to the extent that compilers are able to do this

automatically. However this often leads to cases where the overheads of

parallel execution outweigh the speedup that might have been available

by parallelising the program.

This thesis describes a new implicit parallelism implementation that

calculates the speedup due to parallelism in dependent conjunctions for

Mercury — a purely declarative logic programming language. This is done

by analysing profiling data and a representation of the program in order

to determine when during the execution of a parallel conjunct variables

are likely to be produced and consumed. This enables us to calculate

how long a conjunct may have to wait for a variable to be produced, and

how much parallelism is actually available in a parallel conjunction. This

information should enable the compiler to parallelise a program only in

places where doing so is profitable.

We expect that two of the components we implemented for our implicit

parallelism analysis, coverage profiling and a generic feedback framework,

will also be quite useful in other applications. For example this can help

the compiler select the best calls to inline.
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1 Introduction

The computing industry has become used to the clock speeds of our processors
growing exponentially, to the extent that Moore’s law [11] is often misquoted
as referring to clock speed rather than the density of transistors within an in-
tegrated circuit (IC)1. However, improvements in clock speeds have recently
slowed down sharply, and most increases in performance have been due to in-
creases in the number of CPUs (cores) per chip — a trend that has made paral-
lel computing accessible on commodity hardware. These trends are expected to
continue, in the future most of the increases in computational power will come
from parallelism.

Software developers are now motivated to write programs that can be par-
allelised across multiple processors. Unfortunately, traditionally it has been
difficult to write software that takes advantage of multiprocessors, because such
software is often error prone and expensive to develop and to maintain.

Imperative programming languages (such as C, Java and Python) require the
programmer to describe the program as a sequence of actions. These actions
often involve side effects that alter the state of the program. When writing
parallel programs in an imperative language, the programmer must manage the
execution of code with side effects so that the side effects do not interfere with
other parts of the program that may be running in parallel. This means that the
threads of execution in a program must be synchronised so that, for example,
data is not updated by one thread while another thread is reading it. One
common synchronisation method is the use of mutual exclusion locks. Locks
are used to protect shared resources; a thread may lock a resource so that it
can use it exclusively.

It is very easy for programmers to make mistakes when writing synchronisa-
tion code for parallel programs. Common mistakes include: forgetting to write
synchronisation code at all, which creates race conditions — conditions in which
the program may fail depending on the timing of different events; creating code
that locks multiple shared resources in the wrong order, which can cause po-
tential deadlocks; and acquiring or releasing a lock too early or too late, which
may cause race conditions or poor performance.

Synchronisation becomes increasingly complex as the size of the program
grows, making it difficult to build large-scale parallel programs. Software com-
ponents that include synchronisation code are not composable. Puttting several
individually-correct components together may cause locks to be acquired more
than once or in wrong order, which can lead to deadlocks.

Declarative languages do not have side effects, therefore programmers are
not normally required to use locks in declarative languages. When locks are
required, techniques for managing them, such as Software Transactional Mem-
ory [7, 10] are available.

Programmers also face the problem that finding opportunities for parallelism
within a program is often difficult. Most sources of parallelism allow the creation
of small short-lived parallel computations. While there are many of these, the
overheads of executing these in parallel often outweigh the benefits.

When a lot of parallelism is available (in which case the program is said to be
embarrassingly parallel), it is easy to parallelise the program beyond the parallel

1See the Wikipedia article regarding the misquoting of Moore’s Law
http://en.wikipedia.org/w/index.php?title=Moore%27s law&oldid=242887237
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execution capacity of the computer it is running on. While the amount of
parallelism the machine can exploit cannot increase beyond the number of CPUs,
the overheads of parallel execution continue to increase. This often cripples the
performance of such programs. For example a ray-tracer that creates an image
1,000×1,000 pixels in size has 1,000,000 independent computations available for
parallelisation. Parallelising all of these on a four processor machine creates far
too many overheads than would be necessary to parallelise this program more
optimally.

Parallelism work in declarative languages has created constructs for declar-
ing when some computations should be done in parallel. Mercury’s parallel
conjunction [5] is an example of this, enabling the programmer to declare that
the conjuncts of a parallel conjunction must be run in parallel. Originally, this
was permitted only where the conjuncts were independent of one another, that
is, no conjunct uses a variable that is the output of another conjunct.

Peter Wang modified Mercury’s parallel conjunction [18, 19] so that it sup-
ported the parallelisation of dependant conjunctions. This allows parallel exe-
cution of code that has parallelism available but was not parallelisable in the
original implementation. Dependant conjuncts cannot run completely in paral-
lel, the second and later conjuncts may block during their execution and wait
for one or more dependant variables to be produced by a previous conjunct.

Implicit parallelism enables the compiler, rather than the programmer, to
parallelise a program. Implementations exist of parallel Prolog-like languages,
which include Concurrent Prolog [12–14], Parlog [3, 4] and GHC [17]. Many of
these implementations executed (almost) all code in parallel. This often caused
them to perform badly due to embarrassing parallelism.

Granularity control [9, 15] has since been developed to attempt to reduce
the impact of parallelism overheads by reducing the amount of unnecessary
parallelisations. Different methods of granularity control exist. For instance,
purely compile-time methods use static analysis to determine the complexity of
computations; and then transform the program so that computations are only
executed in parallel if the compiler expected them to be of a particular size or
larger. Run-time granularity control methods use metrics such as instruction
counters to measure the time spent since a parallel computation was spawned, so
that it only executes a computation in parallel after a set amount of sequential
execution has been performed.

Feedback directed implicit parallelism uses information from a profiled ex-
ecution of the program and the number of processors available on the target
machine to make better parallelisation decisions. This aims to optimise the
program for best performance when performing similar work with that number
of processors available. For example, a compiler with access to feedback infor-
mation is aware of the likely sizes of different computations, it is able to decide
if parallel execution is worthwhile for an individual case given an estimate of
the parallelisation’s overheads.

Harris and Singh [8] profile the execution of Haskell programs, measuring
the cost of evaluating each thunk. They have reported up to an 80% speedup
compared to the sequential execution of their test programs on a quad core
machine. However they were not able to improve the performance of some
programs, which they attributed to there being a lack of parallelism implicit in
some programs. These results show that implicit parallelism is a promising idea
for improving the performance of software.
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Tannier’s implicit parallelism implementation for Mercury [16] selects the
most expensive predicates of a program and attempts to parallelise conjunctions
within them, This implementation makes use of compile-time granularity control
to reduce the over-parallelism that can occur in recursive code.

Tannier’s work is the first attempt at automatic parallelisation of dependant
conjunctions. He estimated the cost of parallelising dependant conjunctions
based on the number of dependant variables they shared. This is a näıve cal-
culation, since the time that these variables are produced by one conjunct and
consumed by the other may not correlate with the number of dependant vari-
ables. For example, the consuming conjunct may need a dependant variable
before it can begin any processing which may be produced rather late, resulting
in almost no parallelism as is typical. We believe that Tannier’s algorithm is,
in general, too optimistic about the parallelism available in dependant conjunc-
tions.

This thesis discusses a feedback analysis required to compute the likely
speedup due to parallelisation, in particular, it calculates the speedup in de-
pendant parallel conjunctions based on how long a consuming conjunct may
have to wait for a variable to be produced. We hope that doing this provides
information that can be used to parallelise conjunctions with the greatest po-
tential speedup, making their parallelisation worth the cost of the parallelism
overheads. Likely speedup due to parallelisation is the likely sequential exe-
cution time of the conjunction minus the likely parallel execution time. To
calculate this, we use feedback information provided by a version of Mercury’s
deep profiler [6] that we modified to introduce coverage profiling.

We assume readers are familiar with logical and functional programming.
Familiarity with Mercury is not required since the relevant Mercury concepts
are described in Section 2.1. Section 2.2 introduces the previous work on par-
allelism in Mercury on which this work is based, whilst Section 2.3 introduces
the Mercury deep profiler. Section 3 introduces how we determine if a particu-
lar conjunction is worth parallelising and provides our motivation for coverage
profiling. Section 4 describes our modifications to the deep profiler to provide
coverage information. Section 5 describes the process we use to calculate the
parallelism available in dependant conjunctions. Section 6 discusses a generic
framework for feeding information back into the compiler. Section 7 critically
discusses our contribution and provides suggestions for future work.

2 Background

2.1 Mercury

Mercury is a pure logic programming language intended for the creation of large,
fast, reliable programs. While the syntax of Mercury is based on the syntax of
Prolog, semantically the two languages are very different, due to Mercury’s
purity, type, mode, determinism and module systems. A logic program is a
collection of predicates, which are defined in terms of goals of which there are
several types. Goals are logical expressions that either unify variables, call other
predicates or describe a logical relationship on some other goals. The abstract
syntax for the internal representation of goals used by the Mercury compiler is
shown in Figure 1.
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goal G : x = y | x = f(y1, . . . , yn) | Unification

p(x1, . . . , xn) | Call

(G1, . . . , Gn) | Sequential Conjunction

(G1& . . . & Gn) | Parallel Conjunction

(G1 ; . . . ; Gn) | Disjunction

(V = v1, G1 ; . . . ; V = vn, Gn) | Switch

(if Gc then Gt else Ge) | If then else

not G | Negation

some [x1, . . . , xn] G Existential quantification

Figure 1: Internal representation of Mercury goals

Mercury has a strong Hindley-Milner type system very similar to Haskell’s.
Mercury programs are statically typed; the compiler knows the type of every
argument of every predicate (from declarations or inference) and every local
variable (from inference). The mode system classifies each argument of each
predicate as either input or output. The caller must ensure that input argu-
ments are ground terms before the call is made. Output arguments must be
distinct free variables before the call; the callee will instantiate them to ground
terms. It is possible for a predicate to have more than one mode; the usual
example is append, which has two principal modes: append(in,in,out) and
append(out,out,in). We call each mode of a predicate a procedure. The
Mercury compiler generates different code for different procedures, even if they
represent different modes of the same predicate.

The compiler’s mode checker is responsible for reordering conjuncts as nec-
essary to ensure that for each variable, the goal that generates the value of the
variable comes before all goals that use this value. For each variable in each pro-
cedure, the compiler knows exactly which atomic goal in that procedure makes
that variable ground.

Logic programs often make use of backtracking. This is used when an evalu-
ation of a program hits a dead end and there is an unexplored alternative earlier
in the program due to a disjunction. In such a case the execution backtracks to
the most recent point in the program with an unexplored disjunct. Execution
then resumes from the first such disjunct as if the failed computation had no
effect.

Byrd’s box model [2] for logic programs describes this in terms of four ports:
the call, exit, redo and fail ports. When a procedure is invoked, execution enters
the invocation via the call port. If it succeeds, execution leaves it via the exit
port. If it has an unexplored disjunct, execution may reenter it via the redo port.
If it cannot produce a solution, execution leaves via its failure port. Mercury
adds a fifth port: when a procedure throws an exception, execution leaves the
invocation through the excp port.

Execution must leave a goal exactly the same number of times as it enters.
This relationship is shown in Equation 1. In this paper we refer to the number
of times execution passes through a port as a port count.

Calls + Redos = Exits + Fails + Excps (1)
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Determinism Maximum solutions Minimum solutions
det 1 1

semidet 1 no
multi ∞ 1

nondet ∞ no
erroneous 0 1

failure 0 no

Table 1: Mercury’s determinisms

Each procedure has an associated determinism, which puts limits on the
number of its possible solutions. Mercury’s determinisms are given in Table 1.
Procedures with a determinism of det succeed exactly once for each call; semidet

procedures succeed at most once for each call; multi procedures succeed at least
once for each call; while nondet procedures may succeed any number of times.
Two other determinisms exist: failure and erroneous, which are used for goals
that always fail and always throw exceptions respectively.

A procedure with determinism det is never backtracked into and it never
fails, so its redo and fail port counts must both be zero. Similarly the redo port
counts of semidet procedures must be zero. Multi and nondet procedures may
have any non-negative numbers for any of their port counts, though for multi
procedures, the sum of their exit and excp port counts cannot be less than their
call port count.

2.2 Parallelism in Mercury

Modern operating systems provide two major multi-processing facilities, multi-
ple processes and multiple threads. Typically each running program is a process
that runs independently of other processes on the system. Multiple processes
can be used to implement parallelism within programs. Processes do not im-
plicitly share memory, therefore communication between processes is done via
sockets, explicit shared memory, signals or a combination of these and other
mechanisms.

It is the operating system’s responsibility to schedule the execution of pro-
cesses and threads, including assigning them to processors. The operating sys-
tem may also move a thread or process to a different processor if the one it
was using becomes unavailable. Modern operating systems use preemptive mul-
titasking, meaning they may interrupt the execution of a program in order to
run another program. This ensures that all programs on the system are able to
respond quickly to the user and to each other.

A single process can have multiple threads. Threads can also be thought of
as light-weight processes since like processes they have their own copy of CPU
registers and stack. Other resources such as the heap, code and static data are
shared between threads within that process. The POSIX standard set defines a
threading library known as POSIX threads or pthreads [1] which is supported
by many popular operating systems. Parallelism in Mercury is implemented
using pthreads.

Mercury supports a number of execution algorithms each with their own
backend code generator. The oldest and best supported of these is the low-level
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C backend, which is implemented in terms of an abstract machine defined by
C preprocessor macros. Note that Mercury programs are not interpreted, as
the macros are expanded into a C program that is compiled by a C compiler.
Like a regular processor, the abstract machine has a number of general purpose
registers as well as stack registers for pointing to the tops of two stacks: the
det-stack, used for procedures with at most one solution, and the nondet-stack,
used for procedures that can have more than one solution. Some registers are
implemented by using physical machine registers; their number depends on the
architecture of the physical machine.

When a Mercury program is started, the Mercury runtime system will create
a number of engine structures, each of which represents a virtual processor in
the abstract machine with its own set of abstract machine registers. Each engine
therefore runs in its own thread. The number of engines created depends on the
value of an environment variable. This number should typically be set equal to
the number of CPUs in the machine so that each engine can run on a separate
processor, though the Mercury runtime can not control which engine runs on
which processor.

Just as Mercury engines are abstractions of CPUs, Mercury contexts are
abstractions of processes — computations running on CPUs. Each Mercury
context represents a computation that can be executed in parallel with other
computations. A context stores the state of a computation when its not run-
ning. This state consists of the values of the abstract machine registers and the
contents of the det-stack and the nondet stack.

Creating new contexts is expensive, due to the expense of creating the stacks.
However, when a spawned computation has not started executing yet, its stacks
are empty. To allow finer granularity parallelism, Wang [18] introduced the
spark structure, which represents a description of a call to be executed. A spark
contains only three words of data: a pointer to the label at which it should begin
execution, a copy of its parent’s det-stack pointer register and a pointer to the
next spark in a list. Sparks do not need a copy of the nondet stack pointer
register since we do not support parallel execution of nondeterministic code,
and they do not need copies of the values in general purpose registers because
these are all pushed onto the det stack before the spark is created. Sparks
are thus extremely light-weight compared to contexts. An engine’s run queue
may contain sparks as well as contexts. When a spark is scheduled to run, the
computation it represents will be allocated a context, but in the meantime the
program will need less memory. Whenever we can, we also reuse the memory
used by contexts whose computations have completed.

Mercury implements for parallelism for through parallel conjunction goals.
To avoid the need for coordinated backtracking between different engines, each
parallel conjunct must be a deterministic computation. For a parallel conjunc-
tion of N conjuncts, the compiler will generate sparks for N − 1 of them and
leave one to execute in the current context. The last operation in each of the
spawned-off conjuncts is an abstract machine instruction that registers the com-
pletion of this conjunct, and then ends the execution of the context by making
the memory of the context available for reuse, and then invoking the equivalent
of an OS scheduler to tell the engine on which the context used to run to switch
to executing another context or spark.

A conjunct in a parallel conjunction may be dependant on one or more
variables that a conjunct to its left produces; if so the conjunction is said to be
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a(X, Y) &

b(X, Z)

(a) Independent

a(X, Y) &

b(Y, Z)

(b) Dependent

Figure 2: Independent and dependant parallel conjunctions

dependant. Figure 2b shows an example of this. In this example a and b’s first
arguments are input and their second arguments are output. Y is the dependant
variable, the predicate a is the producer while b is the consumer. Figure 2a
shows an independent conjunction, there are no dependant variables between
the two goals here.

If a consuming conjunct is running in parallel with a producing conjunct,
it cannot proceed past the point at which it requires a variable binding until
the producing conjunct has produced that binding. Mercury implements this
by using futures, each of which represents a value that will be available in the
future. A future is a wrapper around a normal variable, added by the Mercury
compiler during code generation. A future contains: a word that will be set to
the contents of the variable (this is a pointer for data larger than a memory cell),
a boolean describing whether the variable has been produced yet, a pthreads
mutex (mutual-exclusion lock) used to protect the future from concurrent access,
and a list of contexts that are waiting on the production of the variable [19].

Two possible things can happen with regard to the future during execution.
The consuming conjunct may attempt to acquire the value in the future before
it is produced. If this happens, the consuming conjunct’s context will add itself
to the list of contexts waiting for the variable to be produced before suspending.
When the producing conjunct generates the value of the variable, it will signal

all the waiting contexts, allowing them to resume. Alternatively the consum-
ing conjunct may attempt to acquire the value of the future after it has been
produced. In this case the consuming conjunct dose not need to sleep and can
immediately retrieve the value of the variable from the future.

We show in later sections how the time at which the dependant variables
are likely to be produced and consumed can be used to calculate the amount of
parallelism available in dependant conjunctions.

2.3 Deep Profiling

The Mercury deep profiler is a profiler engineered specifically for declarative
programming languages [6]. Declarative languages have unique profiling re-
quirements that conventional profilers do not handle.

Conventional profilers collect information on a per-procedure basis. They
usually modify the program in two ways: they add instrumentation to the
beginning of every procedure to count the calls made to that procedure, and
they sample the program counter periodically to determine how much execution
time is being spent in each procedure. However, the information one can collect
this way is not sufficient for declarative programming languages, for several
reasons.

One reason is that declarative programs contain more procedure and type
polymorphism than imperative programs. For example, the Mercury standard
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library defines a polymorphic type representing maps from keys to values. Dif-
ferent maps may have keys and values of different types, allowing the same code
to work on many different kinds of maps. These different maps may have very
different performance characteristics. Traditional profilers would collapse them
all into a single set of measurements, as they associate profiling information only
with individual procedures. In traditional languages, this is not a problem, as
each kind of map would have its own separate code and thus its own separate
profiling information.

A second reason is that declarative programs make heavy use of recursion,
including mutual-recursion. Most profilers do not attribute costs correctly in
the presence of recursion, because recursion necessarily breaks one of their core
assumptions; if one call to f makes a recursive call to f, the assumption that all
calls to f have the same cost cannot possibly be right.

A third reason is the much higher incidence of higher-order programming in
declarative programs. For example most (if not all) declarative languages define
a filter function to filter a list of values based on the result of a higher-order
function. In some programs, the higher-order functions may be computation-
ally expensive, causing the use of filter to be expensive. In other cases this
function may be cheap. Declarative programmers want their profiling tools to
separate out the profiling data for filter based on the callee of the higher-order
call.

Because these aspects are common in declarative programs, it is important
that the profiler collects accurate information for code that uses them. This
provided the motivation for developing Mercury’s deep profiler.

Deep profiling associates profiling statistics not only with a procedure, but
also with its call site and its deep context. A call site’s deep context is rep-
resented by an alternating chain of call sites and procedures that lead to its
invocation. Call sites must be included in this chain because a procedure may
make several calls to the same callee procedure, and those different call sites
may have different performance characteristics.

The implementation of this alternating chain uses two types of structures:
CallSiteDynamic, and ProcDynamic. Any number of these structures may
exist for every call site or procedure in the program. Profiling data is stored
in CallSiteDynamic structures. Each CallSiteDynamic structure contains a
pointer to a ProcDynamic structure representing its callee. This is true even for
higher order calls, since the callee is known at runtime, though since different
calls through such call sites may call different procedures, such call sites may
point to more than one ProcDynamic. Similarly each ProcDynamic structure
contains an array of pointers to CallSiteDynamic structures that represent the
call sites within that procedure.

The profiling data must refer to procedures by name, and call sites by the call
type (normal first order call, higher order call, or method call). Procedures and
call sites are both also identified to users by file name and line number within
the source program. Rather than potentially storing this information multiple
times in each ProcDynamic and CallSiteDynamic structure, we use two other
structures, ProcStatic and CallSiteStatic, to store this information. Every
ProcDynamic structure has a pointer to the ProcStatic structure that stores
the shared (and mostly static) information about that procedure. Similarly each
CallSiteDynamic structure has a pointer to the CallSiteStatic structure that
stores shared static information. This saves a large amount of memory during
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profiling, since there is exactly one ProcStatic structure for each procedure
and one CallSiteStatic structure for each call site.

The ProcStatic and CallSiteStatic structures are created statically at
compile time. The ProcDynamic and CallSiteDynamic structures are created
at runtime as needed by the instrumentation code as execution passes from one
procedure to the next.

Programmers are often interested in how much execution time is spent in
each procedure and its descendants. Measuring this accurately on a modern
computer requires interfacing with a high resolution clock, which cannot be
done portably. However, because all loops in Mercury programs are created by
recursive or mutually-recursive calls, the number of calls made by a procedure
and its descendants is an approximation of time spent in that procedure and its
descendants. Call counts have a much higher resolution than the portable clock
ticks used by Mercury’s deep profiler. Our implicit parallelism implementation
uses call counts to approximate the execution time of a procedure or call.

Any program worth profiling (because it takes a non-trivial amount of time to
execute) must contain recursion. If we always created a new CallSiteDynamic

structure and/or a new ProcDynamic structure for each call, the profiler’s data
structures would consume several gigabytes of memory per second, and the ma-
chine would run out of memory very quickly. What we actually do is more much
more space efficient: When a call is made to a procedure but an activation of
that procedure is still active, we reuse the ProcDynamic structure of that activa-
tion, and therefore reuse its array of CallSiteDynamic structures as well. This
means that profiling information for all the recursive invocations of a procedure
get charged to the first invocation.

When the program finishes executing, the profiling data is written out to a
file named Deep.data. This file is designed to be processed by the Mercury deep
profiling tool. This tool takes the raw profiling data, which has raw profiling data
in its CallSiteDynamic structures, and processes that data into more useful
forms. The first step in this processing is discovering the cliques, the recursive
and mutually recursive procedure invocations in the call graph. Replacing each
clique in the call graph with a single node will by definition yield a graph with no
cycles, which allows us to propagate profiling information from callees to callers.
This allows the deep profiler to tell the user lots of information: the cost of a
clique (by itself or including its descendants), the cost of a procedure (by itself or
including its descendants), the list of the N most expensive procedures in their
program, and so on. The information we are most interested in is the average
costs of each call site, since we need this information to determine whether a
conjunction containing two calls is worth parallelising or not.

3 Implicit Parallelisation

One lesson of research on parallel logic programming in the 1980s is that par-
allelising everything is a bad idea because of the overheads; there is no point
in parallelising a conjunction unless parallelisation is likely to yield a speedup.
The likely parallelisation speedup is the likely sequential execution time minus
the likely parallel execution time (See Equation 2). We use the terms likely

speedup and likely execution time because the execution time of a computation
cannot be known before it has been executed.
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(c) Dependant parallel execution

Figure 3: Sequential versus parallel executions of two conjuncts A and B

Speedup = TSequential − TParallel (2)

Therefore to calculate the likely speedup, we must know the likely sequential
and parallel execution times.

The likely execution time of a conjunction, either sequential or parallel,
depends upon the execution times of the conjuncts within the conjunction. The
likely execution time of other goals depends on their type: unifications are
trivial to execute and are assumed to have an execution time of zero. The likely
execution time of calls is determined by profiler feedback. The execution time
of non-atomic goals depends upon the execution times of their components.

For our examples in this section, we consider a conjunction of two conjuncts,
A and B, where B takes longer to execute than A. The alternative executions of
these conjuncts are shown in Figure 3. Later we show how this can be extended
to work for conjunctions of any size.

Given access to the kind of information collected by the deep profiler, the
likely sequential execution time of these two conjuncts is simple to calculate: it
is the sum of their individual execution times.

TSequential = TA + TB (3)

Provided that there is a spare CPU available, the likely parallel execution
time of the two conjuncts, if they are independent of each other, is the likely
execution time of the longer running conjunct, plus the overheads of parallel
execution, as shown below in Equation 4.

TParallel = max(TA, TB) + TOverheads (4)

(If there is no spare CPU available, then the time taken will be
TFailedParallel = TA + TB + TOverheads, which is why having too much par-
allelism is bad.) Figure 3b shows the case where there is a spare CPU; the
shaded bars in the figure represent the overheads of parallelism.
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The largest sources of these overheads are the creation of a context (if we
cannot reuse one), the creation and later destruction of a spark, and the invo-
cations of the scheduler. We cannot know at compile time whether we will need
a new context, nor can we determine the costs of these operations at all accu-
rately. We must measure them, and these measurements will yield a range of
costs. We prefer to make our estimate the maximum observed overhead rather
than the average observed overhead, because it reduces the risk of parallelising
conjunctions that lead to slowdowns.

The execution time of an dependant parallel conjunction of two conjuncts A
and B that have one dependant variable is given as TParallel below in Equation
5. This equation divides TDependantB , the time that B takes to execute, into two
components: the time before and the time after B first consumes the dependant
variable. The second component cannot begin until A has produced the variable.
Figure 3c shows the case where B must wait for A to produce a variable.

TDependantB = max(TBeforeProduceA, TBeforeConsumeB) + TAfterConsumeB

TParallel = max(TA, TDependantB) + TOverheads (5)

Any of the execution time calculations can be performed for a conjunction
with any number of conjuncts. The sequential execution time of a conjunction
of any size is simply the sum of the execution times of all the conjuncts, see
Equation 6 below.

TC =
∑

c∈C

Tc (6)

A parallel conjunction may have dependencies between any of its conjuncts
as long as the conjunction is well moded — the producer of a variable is on
the left of all the consumers of that variable. When executing a parallel con-
junction, sparks representing the next conjunct are created by each conjunct
except the last. The parallel conjunction symbol can be thought of as a right-
associative binary operator that sparks its second argument before executing its
first. Therefore, the parallel execution time of a conjunction of any size can be
expressed as the parallel execution time of a conjunction of two goals, where the
second goal is the parallel conjunction of the all the goals except for the first.
This rule is recursive, it should be applied to calculate the execution time of
the conjunction of all the goals except the first. Our implementation does not
attempt to parallelise more than two conjuncts against each other at this time.

Calculating the dependant parallel execution time of conjunctions requires
an analysis that determines when dependant variables are likely to be produced
by the first conjunct and consumed by the second. For some goal types this is
easy, for example consider a sequential conjunction of three goals, where the first
and last goals are calls and the middle goal is a unification that produces the
variable that we are interested in. The execution time of the entire conjunction
is the sum of the times of all the goals. The time before the variable is produced
is the execution time of the first goal (which the deep profiler can give us, for
the profiled run of the program) and of the second goal (which we approximate
as zero, because unifications require only a few instructions).

For other goal types, this is harder. Consider a switch that produces the vari-
able in each switch case. The execution time before the variable is produced is
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the average of the time before the variable is produced in each case, as weighted
by the probability of execution of each case. The execution time of the whole
switch is also a weighted average of the execution times of the different cases.
The only sound way to calculate the weights is to measure the frequency of
execution of the different arms for disjunctions, switches, and if-then-else goals.
The existing deep profiler did not provide this information, so we modified it to
give it to us.

4 Coverage Profiling

The deep profiler already provides some coverage information in the form of
port counts for each procedure and each call site within a procedure. However,
for finding the most profitable places to introduce parallelism, more coverage
information is required. As described in the previous section, we need informa-
tion about the frequency of execution of branches in if-then-elses, switches and
disjunctions, even if they do not include calls. We have therefore modified the
deep profiler to support true coverage profiling.

True coverage profiling requires counting the number of times execution
reaches particular points in the program, points that we call coverage points.
One of our objectives was to minimise the number of coverage points, since this
reduces the performance impact of coverage profiling and hence reduces distor-
tions in the execution profile caused by executing the profiling instrumentation
code.

The reason we do not need to collect coverage information at every point in
the program is that execution counts at some points in a procedure can be used
to infer the execution counts at some other points within that procedure. Later
in this section we describe the coverage inference algorithm we use to infer the
coverage information throughout a procedure.

The program is instrumented by the coverage profiling transformation within
the compiler, which is executed immediately after the deep profiling transforma-
tion. For each point within the program where the execution count cannot be
inferred from other counts, this transformation arranges for it to be measured
at that point. A position within a execution count array for that procedure is
allocated to store the execution count and the coverage point instrumentation
is inserted at that point in the program. The instrumentation increments the
counter in the array each time it is executed. The execution count array is
stored in the procedure’s ProcStatic structure. When the program exits, the
values of all the counters are written out with the rest of the profiling data.

In order to interpret the coverage profiling data, a bytecode representation
of the program is also written to a file. It is important that this bytecode repre-
sentation matches the version of the program that the compiler will parallelise
later. This can be ensured provided that the program has not been modified
by the programmer in the meantime. In particular the relevant optimisations
will have been performed but the program’s structure will not be altered by the
profiling transformations.

Each coverage point has associated static data that describes which goal
in the bytecode representation this coverage point refers to, and whether the
counter measures the count before or after that goal. Most coverage points
measure the execution count after the goal they refer to. Others measure how
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procedure infer coverage(Goal, CountBefore):

switch on the type of Goal:

case unification:

if Goal’s determinism is det:

CountAfter := CountBefore

else if Goal’s determinism is failure or erroneous:

CountAfter := 0

else

CountAfter := look up the coverage point after Goal

end if

case call:

assert call count from call site == CountBefore

CountAfter := get exit count from call site

case conjunction:

CurrentCount := CountBefore

for Conj ∈ Goal’s conjuncts:

CurrentCount := infer coverage(Conj, CurrentCount)

end loop

CountAfter := CurrentCount

Figure 4: Coverage inference algorithm — Part 1

many times execution enters a branch, namely a switch case, disjunct or the
then and else parts of an if-then-else goal.

The coverage inference algorithm (shown in Figures 4, 5 and 6) traverses
the procedure depth-first, annotating goals with coverage information. This
coverage information consists of the execution count both before the goal and
after the goal. The large switch performs coverage inference for each individual
goal type. The count before a goal is often used to infer the coverage counts of
any inner goals, then the execution counts after those inner goals may be used
to infer the execution count after the larger goal.

The coverage inference algorithm expects to find coverage points within the
program at various places, including the beginning of the else branch in an if-
then-else, after a unification that may fail, and after a negation. The decision to
insert a coverage point at any point in a program depends only on information
that is known at compile-time. The compiler’s coverage profiling transformation
therefore has the same structure as the coverage inference algorithm, except that
wherever the coverage inference algorithm reads a coverage point, the compiler
inserts a coverage point.

The Mercury compiler’s mode system knows which goals might fail and
sets the determinism of the goals appropriately. We use this to avoid putting
coverage points after unifications that always succeed and after unifications that
never succeed.

As we mentioned above, the execution counts before and after each call can
be determined by the call site’s port counts. Our coverage inference algorithm
uses the exit port count as the execution count after the call. To help catch
bugs in the coverage profiling and deep profiling systems, we use an assertion
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case disjunction:

SumCountAfter := 0

for Disj ∈ Goal’s disjuncts:

if Disj is the first disjunct:

CountBeforeDisj := CountBefore

else:

CountBeforeDisj := look up the coverage point before Disj

end if

CountAfterDisj := infer coverage(Disj, CountBeforeDisj)

SumCountAfter := SumCountAfter + CountAfterDisj

end loop

CountAfter := SumCountAfter

case switch:

SumCountBefore := 0

SumCountAfter := 0

for Case ∈ Goal’s cases:

if Case is the last case and the switch is complete:

CountBeforeCase := CountBefore - SumCountBefore

else:

CountBeforeCase := look up the coverage before Case

end if

CountAfterCase := infer coverage(Case, CountBeforeCase)

SumCountBefore := SumCountBefore + CountBeforeCase

SumCountAfter := SumCountAfter + CountAfterCase

end loop

CountAfter := SumCountAfter

Figure 5: Coverage inference algorithm — Part 2

to check the invariant that the execution count inferred before the call is equal
to the call port count of the call site.

Three rules describe coverage inference for a conjunction: the execution
count before the first conjunct is equal to the count before the whole conjunction.
The count before the later conjuncts is equal to the count after the previous
conjunct. The count after the whole conjunction is equal to the count after the
last conjunct.

Two rules describe coverage inference for disjunctions: the execution count
before the first disjunct is equal to the count before the whole disjunction, and
the count after the whole disjunction is the sum of the execution counts after
each disjunct. We insert a coverage point at the beginning of every disjunct
except the first, since in general we don’t have any other way of knowing how
many times those program points are reached; if the disjunction has no outputs
(which makes the disjunction semidet), then execution will exit the disjunction
as soon as one disjunct has succeeded.

In general, we have to place a coverage point at the start of every arm of
the switch. There is only one exception. If the switch is complete — that is it
has a case for every possible value of the switched-on variable — then the sum
of the execution counts at the starts of the all arms must equal the execution
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case if then else:

let Cond, Then and Else be the three components of the if-then-else

CountAfterCond := infer coverage(Cond, CountBefore)

CountBeforeThen := CountAfterCond

CountBeforeElse := look up the coverage before Else

CountAfterThen := infer coverage(Then, CountBeforeThen)

CountAfterElse := infer coverage(Else, CountBeforeElse)

CountAfter := CountAfterThen + CountAfterElse

case negation:

let SubGoal be the goal within the negated context

CountAfterIgnored = infer coverage(SubGoal, CountBefore)

CountAfter := look up the coverage after Goal

case existential scope:

let SubGoal be the goal within the existential scope

CountAfter := infer coverage(SubGoal, CountBefore)

end switch

annotate Goal with <CountBefore, CountAfter>

return CountAfter

end procedure

Figure 6: Coverage inference algorithm — Part 3

count before the switch itself. We can therefore omit the coverage point before
one of the cases, and compute the execution count there from all other counts
we have. Like disjunctions, the count after the switch is equal to the sum of the
counts after the switch cases.

Three coverage inference rules apply to if-then-else (ITE) goals: the execu-
tion count before the condition goal is the same as the count before the ITE
goal. The count before the then goal is equal to the count after the condition
goal. The execution count before the else goal in an ITE is equal to the fail-
ure count of the condition, which can be calculated if the other port counts are
known. Our implementation does not measure the number of exceptions thrown
by a goal, therefore this is not implemented. Instead the execution count before
an else goal determined by a coverage point inserted there. The count after the
whole ITE is the sum of the count after the then and else goals.

As an alternative, the compiler provides an analysis that determines if a goal
might throw an exception. It would be possible to use this analysis to remove
the coverage point before the else goal if we know that the condition cannot
throw an exception. This has not been implemented.

The execution count before a negated goal is equal to the count before the
negation as a whole. The count after the negation is equal to the failure count
of the inner goal. As described above, the failure count of a goal cannot be cal-
culated without exception information, so the execution count after a negation
cannot be inferred. We therefore put coverage points after all negations.

The execution count before a goal in an existential quantification scope is
equal to the count before the whole goal. The subgoal of an existential quan-
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Grade Coverage profiling Optimisations Runtime (seconds)
asm fast.gc N/A some 12.82
asm fast.profdeep.gc no none 66.39
asm fast.profdeep.gc yes none 70.17
asm fast.profdeep.gc yes some 46.87

Table 2: Average compilation times for coverage profiling

tification may have more than one solution, if so the these solutions are never
used. In other cases the subgoal will have the same number of solutions as the
whole scope. In either case the execution count of the sub goal and the exis-
tential scope will be equal. Therefore the execution count after the existential
quantification can be inferred as the count after its inner goal.

Table 2 compares the execution times of several versions of the Mercury
compiler when given the task of compiling six of large modules. The first version
is the usual version. The second has deep profiling enabled, while the third has
both deep profiling and coverage profiling enabled. Both forms of profiling
will by default disable all optimizations that could distort in the profile, but
the fourth version reenables some of these; when coverage profiling is used for
implicit parallelism analysis, optimisations should be enabled to minimize the
differences between the program being profiled and the program we will want
to parallelize. Each time shown is derived from the times of six runs, discarding
the lowest and highest execution times, and averaging the rest. The test was
performed on an Intel Core2Quad machine with four 2.4Ghz processing cores
and 4GB of memory It runs Ubuntu, using version 2.6.24-19 of the Linux kernel
and version 3.4.6 of GCC. These benchmarks show that while the deep profiler
degrades the performance of a program, the overheads of coverage profiling do
not make this significantly worse. Therefore coverage profiling is unlikely to
distort the profile of the program much. While it is important that a profiler
does not distort the profile of a program, all the measurements used for our
implicit parallelisation analysis are collected synchronously and do not measure
time, the execution of instrumentation will not affect these measurements.

5 Finding good candidates for parallelism

5.1 Variable Use Time Analysis

We can use coverage information to determine when variables are first consumed
or produced in a goal.

The variable consumption time analysis algorithm is given in pseudo code
as the procedure goal var first consume in Figures 7, 8 and 9. The first
argument of this procedure is the goal that should be searched for the first
consumer of the variable in the second argument. The remaining two arguments
are the cost from the beginning of the procedure containing the current goal up
to the start of the current goal (the first argument) and a stack representing
procedure calls that are already being analyzed. The return value is a tuple of
three values:
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procedure goal var first consume(Goal, Var, CostBefore, Stack):

switch on Goal’s type:

case unification:

if Goal uses Var:

CostBeforeConsume := CostBefore

Found := yes

else:

Found := no

CostAfter := CostBefore

case call:

if Call is higher-order and Var is the higher order value:

CostBeforeConsume := CostBefore

Found := yes

else if Goal uses Var:

if Goal is higher-order or a method call or Goal ∈ Stack:

CostBeforeConsume := CostBefore

Found := yes

else:

let Callee be the procedure called by Goal

NewStack := push(Stack, Callee)

(Found, CostBeforeProcConsume) :=

proc var first consume(Callee, Var, NewStack)

CostBeforeConsume := CostBefore + CostBeforeProcConsume

else:

Found := no

CostAfter := CostBefore + cost of this call site

case conjunction:

CostAfterConj := CostBefore

Found := no

for Conjunct ∈ Goal while Found = no:

(Found, CostAfterConj, CostBeforeConsume) :=

goal var first consume(Conjunct, Var, CostAfterConj, Stack)

CostAfter := Cost

Figure 7: Variable consumption time analysis — Part 1

• A found flag: a boolean that is true if a consumer of the variable has been
found.

• The cost from the beginning of the procedure containing the goal until
immediately after the goal in the first argument. This is valid if the found
flag is false.

• The cost from the beginning of the procedure containing the goal until the
variable is consumed. This is valid if the found flag is true.

The time in the procedure after the variable has been consumed can be calcu-
lated as the total execution time of the procedure as given by the profiler minus
the time within the procedure before the variable is consumed.

The procedure traverses the goal left to right, counting the likely execution
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case disjunction:

CostAfterDisj := CostBefore

Found := no

for Disjunct ∈ Goal while Found = no:

(Found, CostAfterDisj, CostBeforeConsume) :=

goal var first consume(Conjunct, Var, CostAfterDisj, Stack)

CostAfter := CostAfterDisj

case switch:

initialise CaseCostsAfter, CaseCostsBeforeConsume and Weights as

empty lists

Found := no

for Case ∈ Goal:

Weights := Weights ++ get exec count before(Case)

(CaseFound, CaseCostAfter, CaseCostBeforeConsume) :=

goal var first consume(Case, Var, CostBefore, Stack)

if CaseFound:

Found := yes

else:

CaseCostBeforeConsume := CaseCostAfter

CaseCostsAfter := CaseCostsAfter ++ CaseCostAfter

CaseCostsBeforeConsume := CaseCostsBeforeConsume ++

CaseCostBeforeConsume

CostAfter := weighted average(CaseCostsAfter, Weights)

if Var is the switched-on variable:

CostBeforeConsume := CostBefore

Found := yes

else:

CostBeforeConsume :=

weighted average(CaseCostsBeforeConsume, Weights)

Figure 8: Variable consumption time analysis — Part 2

time (cost) before the variable named by the second argument is first consumed.
Unification goals are trivial and assumed to have a cost of zero, therefore

the cost after unifications is the same as the cost before them. If the unification
consumed the variable, the cost before the variable is consumed is the cost before
the unification.

Call goals can either be higher order calls, method calls or plain calls. Higher
order calls call a higher order value. If that value is the value of the variable
whose consumers we are searching for, then this goal consumes that variable.
The cost before such a consumption is the cost before the higher order call. If
the variable appears in the argument list of the call, then this goal consumes that
variable, so we attempt to follow the call to determine how soon the variable is
used in the called procedure. We know the identity of the callee only if this is a
plain call; in other cases we make the pessimistic assumption that the variable
is used at the beginning of the called procedure. The cost before the variable
is used within the called procedure is added to the cost before the call and
returned as the cost before the variable is consumed in this procedure. The
cost immediately after a call is the cost before the call plus the cost of this
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case if-then-else:

let Cond, Then and Else represent the components of the ITE.

(FoundCond, CostAfterCond, CostBeforeConsumeCond) :=

goal var first consume(Cond, Var, CostBefore, Stack)

(FoundThen, CostAfterThen, CostBeforeConsumeThen) :=

goal var first consume(Then, Var, CostAfterCond, Stack)

(FoundElse, CostAfterElse, CostBeforeConsumeElse) :=

goal var first consume(Else, Var, CostAfterCond, Stack)

ThenWeight := get exec count before(Then)

ElseWeight := get exec count before(Else)

CostAfter := weighted average([CostAfterThen, CostAfterElse],

[ThenWeight, ElseWeight])

if FoundCond:

Found := yes

CostBeforeConsume := CostBeforeConsumeCond

else if FoundThen or FoundElse:

Found := yes

if the consumer was not found one of the then or else

branches, then set the cost before the variable was consumed

in that branch to the cost after that branch.

CostBeforeConsume := weighted average(

[CostBeforeConsumeThen, CostBeforeConsumeElse],

[ThenWeight, ElseWeight])

else:

Found := no

case negation or existential scope:

let SubGoal be the goal within Goal

(Found, CostAfter, CostBeforeConsume) =

goal var first consume(SubGoal, Var, CostBefore, Stack)

end switch

return (Found, CostAfter, CostBeforeConsume)

end procedure

Figure 9: Variable consumption time analysis — Part 3

call site as given by the deep profiler (but see below). Note that we must not
follow all recursive or mutually recursive calls, as these would cause unbounded
recursion within our analysis. To prevent this, we maintain a stack representing
the procedures whose bodies we have followed so far, and we check to see that
the callee we are about to follow is not already in the stack. Before following a
call we push the callee’s identity onto the stack.

Conjunctions are analysed from left to right so that the cost before each
conjunct is set correctly. If a conjunct is the first use of a variable then there is
no need to check the rest of the conjunction.

Disjunctions come in two types. Those that do not bind variables and there-
fore have at most one solution are the most common type. Disjunctions that
bind variables and may thus have more than one solution are rarer. Our im-
plicit parallelisation analysis does not handle the second type of disjunction.
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This is because parallelism of non-deterministic code is not supported and non-
deterministic code can not be reached if that code is called from Mercury’s
built-in solutions/2 predicate. The solutions/2 predicate makes a higher-
order call to execute the non-deterministic code, and higher order calls are not
followed by the variable consumption time analysis. Non-deterministic code can
only be reached from a deterministic context by our variable consumption time
analysis via an existential scope. Code within an existential scope may have
more than one solution, however only the first solution will be used. Retrying
code by entering unexplored disjuncts is much less common. Therefore the vari-
able consumption time analysis does not need to handle disjunctions with more
than one solution.

For simplicity, we assume that disjunctions run from beginning to end like
conjunctions. This assumption is conservative for disjunctions that produce at
most one solution because they cannot be re-entered if a goal to the right of
the disjunction fails. To handle such disjunctions non-conservatively, we would
need to calculate the probability of failure of each goal in each disjunct, so that
we knew at what point a disjunct would fail and execution would proceed to
the next disjunct. Disjunctions with more than one solution can be re-entered
if a goal after the disjunction fails, so for them we would also need to know the
probabilities of failures at points after the disjunction in order to calculate when
disjuncts other than the first are entered.

The analysis iterates through the disjuncts until it finds the first time the
variable is consumed. We compute the cost to the point just after the disjunction
as the cost before the disjunction plus the sum of the costs of all disjuncts. This
is inaccurate, but it is a conservative approximation, so it should not lead to
over-parallelising the program.

If a switch switches on the variable whose first consumer the analysis is
looking for, then the cost before the first consumption is the cost before the
switch. Otherwise we check each case of the switch to see if it consumes this
variable. If at least one case consumes the variable, then we take the average of
when all the cases consume the variable, weighted by the number of times each
case is executed as given by coverage profiling data. It is possible that some
switch cases may consume the variable and some will not. Our analysis sets the
variable’s consumption time to the time at the end of the switch case for all the
switch cases that do not consume the variable. It does this to model the action
of the Mercury compiler, which will insert a call to wait for the variable at the
end of such cases, in order to respect the invariant that all branches of a switch
must bind the same set of nonlocal variable, and to allow goals after the switch
to use the value without waiting for it. The cost after the switch is the weighted
average of the costs after each of the cases.

If the variable whose first consumer the analysis is looking for is consumed
in the condition of an if-then-else goal (ITE), the compiler will wait for the
variable before the condition, so we return the time so far as the time before
consumption. (If a part of the condition could fail before the first mention of the
variable, then the compiler could do better, but it doesn’t try, and our analysis
must model the action of the compiler.) If the variable is consumed in the then
and else branches, the analysis computes the average of the costs before the
variable is consumed in each branch weighted by the execution count of each
branch as given by coverage profiling. The variable may be consumed in one
branch but not the other. As with switches, the compiler will ensure that the
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program waits for the future to be produced in both branches by adding code to
wait for the future at the end of the branch that does not contain a consumer.
Therefore the analysis assumes that the variable is consumed at the end of the
branch that does not contain a consumer. The cost after the entire ITE is the
average of the cost after the then and else branches weighted by the execution
count of the branches.

The case for negations and existential quantification scopes are very simple,
they simply call goal var first consume for the sub goal of the negation or
existential scope and return its output.

Unfortunately retrieving the cost for a recursive or mutually recursive call
site in a deep profile is not easy. The cost of a recursive call depends upon
the current depth of the recursion, and this information is not directly collected
by the deep profiler so that it does not run out of memory when profiling long
running programs. Therefore the this analysis cannot retrieve the true cost of
many call sites.

A feasible solution to this problem may be to calculate the cost of the base
case of any recursive procedure (which is the cost when the recursion depth of
a call to the procedure is zero), and to calculate the cost of calls with other
recursion depths from this:

cost(0) = cost base

cost(d) = cost recursive(cost(d − 1)) | d > 0 (7)

The obvious way to implement this would traverse the procedure body n

times to calculate cost(n), but one could also try to explicitly construct this
recurrence and try to express it in a closed form. We have not yet implemented
either solution.

We have deliberately chosen to search for a consumer starting at the begin-
ning of a procedure and moving towards the end so that the analysis does not
need to know the cost of calls that the variable is consumed in. When the anal-
ysis reaches a call that consumes the variable it uses and it cannot recurse into
the call because it is a recursive, mutually recursive, higher order or a method
call, it assumes the conservative default: that the call consumes the variable im-
mediately. If this call is recursive or mutually recursive, then the analysis cannot
retrieve the correct cost of the call from the deep profiler. However the cost of
the call is not required because the cost before the variable is first consumed is
made equal to the cost before the call as per this conservative assumption.

A similar analysis is used to determine when a variable is produced within a
procedure. It is different to searching for the first consumer in one major way.
When it reaches a recursive, mutually recursive, higher-order or method call
it uses the conservative assumption that the procedure produces the variable
immediately before returning. Therefore it uses the cost after the call as the
cost after the variable is produced. This requires that the analysis traverses the
procedure backwards in order to calculate the cost after the production of the
variable by the time it reaches the producer. This allows the variable production
time analysis to avoid part of the problem with retrieving costs for recursive call
sites from the deep profiler.
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5.2 Building Implicit Parallelisation Feedback

Calls are the only atomic goals that can take a non-trivial amount of time to
execute. Non-atomic goals that contain a call goal may also have a non-trivial
execution time, however a non-atomic goal may not always execute a call goal
within it. Therefore we limit our initial implementation to consider only par-
allelising call goals against each other. Future work may wish to parallelise
non-atomic goals against calls or other non-atomic goals. Also, this implemen-
tation only attempts to create parallel conjunctions of two conjuncts.

In Section 3 we introduced several formulas that can be used to calculate the
speedup due to parallelism of conjunctions. Parallelising all the conjunctions
within a program where TSequential > TParallel will most likely degrade perfor-
mance, because once all the CPUs are busy, any extra parallel computations
will yield only extra overhead (since TFailedParallel > TSequential). This will
occur when the number of computations we try to run in parallel significantly
exceeeds the computer’s parallel processing capabilities. We therefore want to
exploit only a smaller set of the parallelism opportunities. One simple heuristic
is to parallelise only the conjunctions that have a speedup above a threshold
whose size comfortably exceeds TOverhead.

Equation 8 shows the calculation for the parallelisation speedup of an inde-
pendent parallel conjunction of two goals A and B.

Speedup = TA + TB − max(TA, TB) − TOverheads (8)

Since TA +TB −max(TA, TB) = min(TA, TB), if either TA or TB are smaller
than TOverheads, then it takes more time to spawn off the corresponding goal
and execute it in parallel than to execute it sequentially, and Speedup will
be negative. This is even more true for dependant parallel conjunctions, for
which the available speedup is further limited by the need for synchronisation.
Therefore we only consider parallelising calls that have an execution time greater
than the overheads of parallelisation plus a speedup threshold. Procedures
that have a higher cost are more likely to contain call sites that are worth
parallelising. The parts of a program that contribute to most of its runtime
are not always the longest-running parts of a program: code that runs quickly
each time but is invoked many times can take more time overall than a longer-
running piece of code that is invoked only a few times. Optimising the parts
that contribute the most to the runtime is generally better than optimising the
longest running parts. Therefore our implicit parallelisation analysis searches
for parallelism opportunities only within procedures that have a total (not per-
call) execution time above a configurable threshold. By total execution time we
mean the total amount of time spent executing a procedure and its descendants.

Our analysis uses the program representation bytecode to scan the contents
of such procedures to search for call sites whose per-call execution time is greater
than the speedup threshold plus the parallel execution overheads. Calls may be
parallelised against each other provided that they are in the same conjunction
and separated by any number of trivial atomic goals such as unifications and calls
to builtin procedures. It would be simple to extend this sot that it parallelises
calls separated by trivial non-atomic goals — non-atomic goals that contain
only trivial goals. An example is shown in Figure 10. Assuming that in each
procedure, the first argument is input and the second is output, the unification
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BeginningGoals,

p(A, B),

C = B + 3,

q(C, D),

EndGoals

Figure 10: Calls a and b may be parallelised

BeginningGoals,

(

(

p(A, B),

C = B + 3

) &

q(C, D)

)

EndGoals

Figure 11: Parallelisation of two calls separated by a unification

in the middle depends upon the call to p/2 and the call to q/2 depends on the
unification, so these goals cannot be reordered.

Figure 11 shows one of two possible ways this code may be parallelised.
The unification is placed in a plain conjunction that is the first conjunct of the
parallel conjunction. Alternatively the unification could have been executed in
sequence with the call to q/2. The optimal parallelisation depends on when B

is produced by p/2 and when C is consumed by q/2. The parallelisation shown
in Figure 11 is most optimal when B is produced late by p/2 and C is consumed
late by q/2.

It is very common for unifications and calls to built in procedures to occur
between calls, therefore our analysis is able to decide whether the goals between
two calls should be run in sequence with either the first or second goals. Our
analysis builds a variable dependency graph, and then queries this graph for
each variable consumed by the second call. If it finds that it depends on a
variable produced by the first call but only indirectly, then a goal between the
calls must produce this variable. (In a mode correct program, this goal cannot
be either before the first call or after the second.) Because the goals between the
calls are trivial, there is no benefit in splitting them up, running some of them
in sequence with the first call and some in sequence with the second call. If the
time since the variable is produced in the first call is less than the time before the
variable is consumed in the second call, then we will execute the goals between
the calls in sequence with the first call, because this maintains the greatest
amount of parallelism, otherwise we executed them in sequence with the second
call. In either of these cases, we must adjust the formula for the expected parallel
execution time, because either the first conjunct will produce the future at the
very end of its computation or the second conjunct will consume the future at
the beginning of its computation. We are currently working on extending this

24



to the case where there are several indirect dependencies between the calls.
Parallelising all call pairs whose parallel execution speedup is above a thresh-

old may still result in embarrassing parallelism. Consider a recursive predicate
such as map/3 whose recursive case includes two calls, one of which is recursive.
If these two calls are parallelised against each other, we will get embarrassing
parallelism: if a call causes recursion 100 levels deep, we will spawn 100 sparks.
Because these parallel executions are nested this parallelism will not be advan-
tageous unless the computer they are executing on has at least 100 processors.

Granularity control is able to reduce the impact of poor parallelism decisions
such as these. It works by transforming the program so that only every Nth
recursive call creates a parallel execution where N is determined at compile time.
Tannier [16] introduced such a transformation into the Mercury compiler. Such
a granularity control transformation cannot assist in situations where parallel
computations are nested but there is no recursion or mutual recursion.

Instead it is best to avoid creating nested parallel computations if that would
lead to embarrassing parallelism. It is possible to use the deep profiling data,
in particular the call graph of the program to do this. A possible implemen-
tation is to traverse the call graph incrementing the number of active parallel
computations each time a parallelism opportunity that has a speedup above the
speedup threshold is reached. This should be done until the number of active
parallel computations exceeds the number of available processors on the target
machine, once we reach that point, we can decide not to parallelise any compu-
tations below this point in the call graph. A call graph will usually have cycles,
which the Mercury deep profiler represents as cliques; its call graph is a tree
of cliques. This can be used together with other profiling information and the
bytecode representation of the program to mimic a complete call graph with bet-
ter information about recursive calls so that the analysis can avoid unbounded
recursion. This feature has not been implemented at this time.

The programmer may modify the sources of the program or change the con-
figuration of optimisations between building the profiling version of the program
and the parallelised version of the program. This may cause differences between
the bytecode representation of the program and the program that is to be paral-
lelised by the compiler. We attempt to handle some subtle differences between
these representations of the program so that parallelisation can still be per-
formed in many cases. One such difference is that goals may have been added
or removed from the conjunction containing the calls to be parallelised.

We have carefully selected what feedback information should be provided to
the compiler. The information provided for each pair of calls to parallelise is:

• The module name, predicate name, arity and mode of the procedure con-
taining this conjunction.

• A path through the tree of goals to the conjunction containing the two
calls to parallelise within the procedure.

• The names of the modules and predicates of the callees that should be
parallelised, these may be unknown if the call is a higher order or method
call.

• The variable names used in the source program for the arguments of each
of the calls (variables introduced by the compiler do not have useful names
and are not included here). This is included because several calls to the
same predicate may exist in a single procedure.
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Figure 12: Profiler Feedback Loop

Provided that the differences between the analysed representation of the
program and the representation the compiler parallelises are minimal, this in-
formation will be sufficient for the compiler to locate most of the parallelism
opportunities that our optimisation has recommended. This is likely, because
the programmer will usually use the implicit parallelism implementation when
compiling a release version of their program. It is unlikely that they will make
significant changes to the program after profiling it and before compiling the
parallelised version.

6 Supporting Profiler Directed Optimisations

6.1 Profiler Feedback Framework

Our implicit parallelism analysis operates on profiling data and a bytecode rep-
resentation of the program. A program compiled for both deep profiling and
coverage profiling produces both of these when executed.

An automatic parallelisation tool may wish to traverse the entire call tree
of the program. For example, to limit the amount of parallelism at each stage
of execution to the number of CPUs available. Such a tool needs to be able to
work on the whole program. The Mercury compiler never operates on the whole
program: it compiles separate modules separately. We therefore implemented
our implicit parallelisation analysis in a new tool called mdprof feedback. For
now, its task is to use profiling data and our variable use analysis to choose the
conjunctions that are most profitable to parallelise, and to record this informa-
tion in a feedback file that can then be given to the compiler. The data flow of
the feedback process is shown in Figure 12.

Telling the compiler what to parallelise is just one use of profiler feedback.
Other optimisations (such as inlining) could also benefit from profiling feedback.

Using a feedback-directed optimisation requires that the user compile and
run their program before feedback information is produced, which takes a sig-
nificant amount of time. Because of this, feedback-directed optimisations do
not make sense unless the total execution time of the optimised program —
which depends mostly on how many times it will be executed — is significantly
greater than the time it takes to compile and execute the profiling version of

26



data create_report report

display_report

analyse

display htmlize HTML

feedback

Figure 13: Deep profiler data flow

the program. We expect that feedback-directed optimisations would normally
be used when the programmer is building a release candidate version of their
program, after they have performed testing and fixed any bugs.

In all cases the program should be profiled on an input that is representative
of the inputs the program is expected to handle when it is used normally. This
is important to ensure the compiler makes decisions using feedback information
that improves rather than degrades the performance of the program in general.
How a representative input is chosen and how important the exact choice of the
profiling input is will change from program to program.

We have designed and implemented a generic feedback framework that al-
lows tools (both inside or outside the compiler) to create feedback information
for the compiler. The feedback information can be expressed as any Mercury
type, making the feedback framework very flexible. New feedback-directed op-
timisations may require feedback information from new analyses. We expect
that many new feedback information types will be added to support these opti-
misations. We also expect that an optimisation may use more than one type of
feedback information and that more than one optimisation may use the same
feedback information.

The on-disc format of the feedback information file is very simple, it contains
a header that identifies the file format, including a version number. What
follows is a list of feedback information items. When the file is read in the file
format identifier and revision number are checked, the list of information items
is checked to ensure that no two items describe the same feedback information,
for example there can only be at most one item in this list that describes how
to automatically parallelise a program.

6.2 Refactoring the Deep Profiler Tools

The deep profiling tool reads in the deep profiling data and pre-processes it as
described in Section 2.3. A user may then use the web based user interface
to explore their program’s profile by producing different reports about differ-
ent parts of their program, including modules, procedures and cliques. These
reports have traditionally been generated in one step, from the post-processed
profiling data directly to HTML. This made it difficult to implement tools such
as mdprof feedback, since what they want is the semantic content of one or
page pages that the user may want to display, without having to recover it by
scraping HTML.

We have therefore have changed the deep profiler to generate HTML not di-
rectly but indirectly, going through two new data structures we designed. The
first defines the semantic contents of a deep profiling report, the kind of infor-
mation that tools like mdprof feedback need. The second defines a medium-
independent display structure that specifies how to display a report to the user
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in terms of headers, paragraphs, text, tables and so on. We have written the
code to convert a report structure into a display structure and to convert a
display structure into HTML for display to the user. We then changed the
implementation of the query types whose answers are needed by our implicit
parallelism analysis to generate report structures instead of HTML; later, other
members of the Mercury team similarly modified the implementation of the re-
maining query types. Figure 13 shows the data flows of the profiling tool and
the feedback tool using the new structures.

The mdprof feedback tool shares some of its code with the deep profiler
tool. When it starts, it reads and pre-processes the profiling data and the pro-
gram representation. Each analysis has access to this data and may use it to
create a deep profiling report so that it can use more high-level information to
perform its analysis. For example the implicit parallelisation analysis uses the
top procedures report to find parallelism in the longest running procedures, and
the procedure report to retrieve information about the call sites in each proce-
dure. It also uses two new reports that we have implemented: one that returns
a coverage annotated representation of a procedure definition, and another that
returns the times when arguments are produced and consumed by a procedure
along with the procedure’s total cost.

Besides allowing us to generate feedback to the compiler about what con-
junctions to parallelize, all these changes will also make it easier to develop
both new profile feedback directed optimisations and new user interfaces to the
profiling tool.

7 Conclusion

This thesis has described a implicit parallelism implementation for the Mercury
programming language. Achieving the goal of correctly computing the speedup
due to parallelisation of dependant conjunctions has been made possible by our
coverage profiling implementation and feedback framework, which both provide
other benefits.

The new feedback framework we have created will also make other feedback
directed optimisations easier to write. Coverage profiling may be used for other
profile directed analyses. For example inlining is a trade off between avoiding
the overheads of procedure calls and the size of the program’s compiled code.
Coverage profiling provides execution counts on goals used within branching
structures such as switches and if then else goals, this information can be used
to inline procedure calls in branches that are executed most frequently. This
minimises the number of procedure calls made by the program without unduly
increasing the size of the compiled code.

Although our implicit parallelism implementation is incomplete — the com-
piler does not yet use the feedback information to parallelise the program —
the remaining work is straight-forward.

Profiler-directed implicit parallelism is not perfect, a program parallelised
using this approach may perform worse than its sequential equivalent when
given some inputs. Although this is true for any parallelisation method, we
believe that this is less of a problem for a profiler-directed approach, as such an
approach will have access to performance metrics about the program when it
is run with a representative input. This problem can be further addressed by
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allowing the collection and exploitation of profiling data from more than one
invocation of the program. Other worst case behaviours including embarrassing
parallelism can be prevented by implementing algorithms such as parallelising
calls nearer to the top of the program’s call graph as we discussed in Section
5.2.

Features such as specialising procedures for parallelism could be added. Spe-
cialising procedures for parallelism generates both a sequential and parallel ver-
sion of a procedure that should use sequential execution in some cases and par-
allel execution in others. The sequential version of the procedure can be used in
cases where there are already a lot of parallel computations running. Other im-
provements include improving the accuracy of calculations that estimate when
variables are consumed and produced, which can be done by calculating the
expected execution time of a recursive call site or procedure as we discussed in
Section 5.2. We expect that many more improvements can be made.

Our approach is different from the existing implicit parallelism strategies, of
which the most closely related are work on Ciao Prolog [9] and the work of Shen,
Costa and King [15]. Where they parallelised many computations by default
and then attempted to prevent embarrassing parallelism by choosing to convert
some of those parallel computations back into sequential computations, our
implementation only parallelises computations that it believes will improve the
performance of the program. Tannier [16] also chooses only to parallelise code
that would lead to a speedup, however his implementation is too optimistic when
calculating the speedup in dependant parallel conjunctions. It considers only the
overheads of managing the each future and does not consider that execution of
the second conjunct will most-likely be delayed until the first conjunct produces
the future. Also, our analysis has access to a representation of the program
including mode information. This information is required to determine which
calls are dependant on other goals they might be parallelised with and determine
how much speedup there may be in the case of dependant parallelism.

Overall this work brings the goal of good implicit parallelism optimisations
closer by proving that it is possible to calculate the likely speedup due to par-
allelism in dependant conjunctions. The compiler should be able to use this
information to exploit opportunities for parallelism in a program only when do-
ing so is profitable and not when the overheads would outweigh the available
speedup.
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tolerated the importance of this work over other tasks, namely the mountain of
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