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1 Introduction

This document describes the compilation environment of Mercury. It describes
e how to use ‘mmc’, the Mercury compiler;
e how to use ‘mmc --make’, a build tool integrated into ‘mmc’;
e how to use an older build tool, ‘mmake’, built on top of GNU make;
e how to use ‘mdb’, the Mercury debugger;
e how to use ‘mprof’, a ‘gprof’-style profiler for Mercury; and

e how to use ‘mdprof’, a more detailed profiler for Mercury that uses a web interface.

Mercury programs can be compiled to executables via any one of three target languages:
C, Java and C#. The most frequently used target language is C, for two main reasons.
The first is that several important parts of the Mercury system, such as ‘mdb’, ‘mprof’ and
‘mdprof’, are implemented only when targeting C. The second is that targeting C yields
the fastest executables.

2 File naming conventions

Mercury source files must be named ‘*.m’. Each Mercury source file should contain a single
Mercury module whose module name should be (although it does not have to be) the same
as the filename without the ‘.m’ extension.

The Mercury implementation uses a variety of intermediate files, which are described
below. But all you really need to know is how to name source files. For historical reasons,
the default behaviour is for intermediate files to be created in the current directory, but if
you use the ‘-—use-subdirs’ option to ‘mmc’ or ‘mmake’, all these intermediate files will be
created in a ‘Mercury’ subdirectory, where you can happily ignore them. Thus you may
wish to skip the rest of this chapter.

In cases where the source file name and module name don’t match, the names for inter-
mediate files are based on the name of the module from which they are derived, not on the
source file name.

Files whose names end in ‘.int’, ‘. int2’, *.int0’ and ‘. int3’ are interface files; these are
generated automatically by the compiler, using the ‘--make-interface’ (or ‘--make-int’),
‘~-make-private-interface’ (or ‘--make-priv-int’), ‘--make-short-interface’
(or ‘--make-short-int’) options. (Invoking the compiler with ‘--make-interface’
generates both ‘.int’ and ‘.int2’ files.) Files whose names end in ‘.opt’ are used for
inter-module optimization, and are created using the ‘--make-optimization-interface’
(or ‘--make-opt-int’) option.  Similarly, files whose name ends in ‘.trans_opt’
are used for transitive inter-module optimization, and are created wusing the
‘~-make-transitive-optimization-interface’ (or ‘--make-trans-opt’) option.

)

Since the interface of a module changes less often than its implementation, the ‘.int’,
‘.int0’, “.int2’, ‘.int3’, ‘.opt’, and ‘.trans_opt’ files will often remain unchanged when
they are rebuilt. To avoid unnecessary recompilations of the clients of the module, the
timestamps on these files are updated only if their contents change. Files with the suffixes
‘.date’, ‘.date0’, ‘.date3’, ‘.optdate’, and ‘.trans_opt_date’ serve as timestamp files,
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to be used when deciding whether the interface files need to be regenerated: they each
record the last time when the file or files it represents has last been checked for being up to
date.

Files ending in ‘.d’ are automatically generated Makefile fragments which contain the
dependencies for a module. Files ending in ‘.dep’ are automatically generated Makefile frag-
ments which contain the rules for an entire program. Files ending in ‘.dv’ are automatically
generated Makefile fragments which contain variable definitions for an entire program.

As usual, ‘. ¢’ files are C source code, and ‘.o’ files are object code. In addition, ‘.pic_o’
files are object code files that contain position-independent code (PIC). ¢.1pic_o’ files are
object code files that can be linked with shared libraries, but don’t necessarily contain
position-independent code themselves. ‘.mh’ and ‘.mih’ files are C header files generated by
the Mercury compiler. Their non-standard extensions are necessary to avoid conflicts with
system header files.

‘.java’ files are Java source code, ‘.class’ files are Java bytecode, and ‘. jar’ files are
Java archives.

‘. csg’ files are C# source code, ‘.d11’ files are library assemblies and, when compiling to
C+#, ‘.exe’ files are process assemblies.

When smart recompilation (see Section 9.5 [Auxiliary output options|, page 103) is en-
abled, ‘.c_date’, ‘.cs_date’, ‘. java_date’ and ‘.erl_date’ files perform the same function
for ‘.c’, ‘.cs’, ‘. java’ and ‘.erl’ files respectively as e.g. ‘.dated’ files do for ‘.int3’ files:
when smart recompilation works out that a module does not need to be recompiled, it up-
dates the timestamp of the timestamp file for the target file, but leaves the timestamp of

the target file itself unchanged.

‘.used’ files contain dependency information for smart recompilation (see Section 9.5
[Auxiliary output options], page 103).

3 Using the Mercury compiler

The Mercury compiler is called ‘mmc’ (for “Melbourne Mercury Compiler”). Some of its

options (e.g. ‘=c’, ‘=0’, and ‘~I’) have a similar meaning to that in other compilers.

(Note that on Microsoft Windows systems, the name ‘mmc’ is also used by the executable
for the Microsoft Management Console. To avoid the name clash on these systems, you can
either invoke the Mercury compiler by the alternative name ‘mercury’, or adjust your PATH
to ensure that the Mercury ‘bin’ directory precedes the Windows system directory.)

Arguments to ‘mmc’ may be either file names (ending in ‘.m’), or module names, with ‘.’
(rather than ‘__’) as the module qualifier. For a module name such as ‘foo.bar.baz’, the
compiler will look for the source in the file named ‘foo.bar.baz.m’. To make the compiler
look for a module in another file, use ‘mmc -f sources-files’ to generate a mapping from
module name to file name, where sources-files is the list of source files in the directory (see
Section 9.4 [Output options], page 99).

Arguments to ‘mmc’ may also be in ‘@file’. The ‘@file’ argument is replaced with ar-
guments representing the contents of the file. This argument processing is done recursively.
The contents of the ‘@file’ is split into arguments one per line in the file.

There are two ways to compile a program that consists of a single source file. The first
way, which works only when targeting C, is to issue the command
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mmc filename.m
The second way, which works regardless of target language, is to issue the command
mmc --make filename

There are also two ways to build programs that consist of more than one source file:
using Mmake (see Chapter 5 [Using Mmake], page 5), which only works when targeting C,
or using ‘mmc --make’.

We strongly recommend that programmers use ‘mmc --make’ rather than invoking ‘mmc’
directly, because ‘mmc --make’ is generally easier to use and avoids unnecessary recompila-
tion.

When targeting C on systems that do not require an executable file extension, ‘mmc’ will
put the executable into a file called ‘filename’; on systems (such as Windows) that use
‘.exe’ as the file extension for executables, ‘mmc’ will put the executable into a file called
‘filename.exe’.

When targeting C#, ‘mmc’ will generate a process assembly called ‘filename.exe’. On
Windows, this process assembly can be run directly. On non-Windows systems, ‘mmc’ will
also generate a shell script called ‘filename’ that invokes the CLI execution environment on
the process assembly. (See the file ‘README.CSharp.md’ included in the Mercury distribution
for further details.)

When targeting Java, ‘mmc’ will package up all of the class files for the executable into
a Java archive (JAR) named ‘filename.jar’. It will also generate a launcher that in-
vokes the program using the Java interpreter. If you are using the Windows command
line interpreter ‘cmd.exe’, this launcher will be a batch file called ‘filename.bat’. Oth-
erwise, the launcher will be a shell script called ‘filename’. Java runtime flags can be
set using ‘mmc”’s ‘--java-runtime-flags’ or ‘--java-runtime-flag’ options. Such Java
runtime flags will be included in the generated launcher shell script or batch file. You
may override any runtime flags set at (Mercury) compile time by setting the variable
MERCURY_JAVA_OPTIONS in the environment. Classpath settings made using ‘mmc’’s
‘-—java-classpath’ option will also be included in the generated launcher shell script or
batch file.

If you use Mmake or ‘mmc --make’, then you do not need to understand the details of
how the Mercury implementation goes about building programs. Thus you may wish to
skip the rest of this chapter.

To compile a source file to object code via C without creating an executable, use the
command

mmc —-c filename.m

Since targeting C is the default, this tells ‘mmc’ to generate C code, and then invoke the
configured C compiler to translate that to object code. ‘mmc’ puts the generated C code
into a file called ‘module.c’ and the generated object code into a file called ‘module.o’,
where module is the name of the Mercury module defined in ‘filename.m’. If the source
file contains nested modules, then each submodule will get compiled to separate C and
object files.

Before you can compile a module, you must make the interface files for the modules that
it imports (directly or indirectly). You can create the interface files for one or more source
files using the following commands:



Chapter 3: Using the Mercury compiler 4

mmc —--make-short-int filenamel.m filename2.m ...
mmc --make-priv-int filenamel.m filename2.m ...
mmc —--make-int filenamel.m filename2.m ...

The first command builds (or rebuilds) the ‘. int3’ file of each module contained in the
named source files. The second command builds (or rebuilds) the ‘. int0’ file of each module
contained in the named source files. (Note that only modules that have submodules need
‘.int0’ files.) The third command builds (or rebuilds) both the ‘.int’ and ‘.int2’ file of
each module contained in the named source files.

If you are going to compile with ‘--intermodule-optimization’ enabled, then you also
need to create the optimization interface files.

mmc --make-opt-int filenamel.m filename2.m ...

If you are going to compile with ‘~-transitive-intermodule-optimization’ enabled,
then you also need to create the transitive optimization files.

mmc --make-trans-opt filenamel.m filename2.m ...

After you have made all the interface files, one way to create an executable for a multi-
module program is to compile all the modules at the same time using the command

mmc filenamel.m filename2.m ...

This will by default put the resulting executable in ‘filename1’, though you can use the
‘-0 filename’ option to specify a different name for the output file, if you so desire.

The other way to create an executable for a multi-module program is to compile each
module separately using ‘mmc -c’, and then link the resulting object files together. The
linking is a two stage process.

First, you must create and compile an initialization file, which is a C source file containing
calls to automatically generated initialization functions contained in the C code of the
modules of the program:

c2init modulel.c module2.c ... > main-module_init.c,
mgnuc -c main-module_init.c
The ‘c2init’ command line must contain the name of the C file of every module in

the program. The order of the arguments is not important. The ‘mgnuc’ command is the
Mercury GNU C compiler; it is a shell script that invokes the configured C compiler with
the options appropriate for compiling the C programs generated by Mercury. (In the early
days of the Mercury project, the configured C compiler was almost always GCC, which is
why the name of the script is what it is, but the script itself will work with clang or MSVC
as well.)

You then link the object code of each module with the object code of the initialization
file to yield the executable:

ml -o main-module modulel.o module2.o0 ... main_module_init.o

‘ml’, the Mercury linker, is another shell script that invokes a C compiler with options
appropriate for Mercury, this time for linking. ‘m1’ also pipes any error messages from the
linker through ‘mdemangle’, the Mercury symbol demangler, so that any error messages
refer to predicate and function names from the Mercury source code rather than to the
names used in the intermediate C code.

The above command puts the executable in the file ‘main-module’. The same command
line without the ‘-0’ option would put the executable into the file ‘a.out’.
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‘mmc’ and ‘m1’ both accept a ‘-v’ (verbose) option. You can use that option to see what
is actually going on. For the full set of options of ‘mmc’, see Chapter 9 [Invocation], page 90.

4 Running programs

Once you have created an executable for a Mercury program, you can go ahead and execute
it. You may however wish to specify certain options to the Mercury runtime system. The
Mercury runtime accepts options via the MERCURY_OPTIONS environment variable. The most
useful of these are the options that set the size of the stacks. (For the full list of available
options, see Chapter 10 [Environment], page 138.)

When targeting Java or C#, and when targeting high level C (‘mmc
--high-level-code’), stack management is the responsibility of the target lan-
guage’s compiler. When targeting low level C (‘mmc’ without —high-level code), stack
management is the responsibility of ‘mmc’ and of the C runtime system. This backend uses
two stacks, the det stack and the nondet stack. With ‘mmc --stack-segments’, both of
these stacks will grow and shrink automatically as needed. Without ‘--stack-segments’,
their size is fixed at program start-up. The default size is 4096k times the word size (in
bytes) for the det stack and 64k times the word size (in bytes) for the nondet stack, but
these can be overridden with the ‘--detstack-size’ and ‘--nondetstack-size’ options,
whose arguments are the desired sizes of the det and nondet stacks respectively, in units
of kilobytes. On operating systems that provide the appropriate support, the Mercury
runtime will ensure that stack overflow is trapped by the virtual memory system.

With conservative garbage collection (the default), the heap will start out with a zero
size, and will be dynamically expanded as needed, When not using conservative garbage
collection, the heap has a fixed size like the stacks. The default size is 8Mb times the word
size (in bytes), but this can be overridden with the ‘--heap-size’ option.

5 Using Mmake

Mmake, short for “Mercury Make”, is a tool for building Mercury programs. The same
functionality is now provided in ‘mmc’ directly by using the ‘--make’ option:

mmc --make main-module
The usage of Mmake is discouraged, not least because it works only when targeting C.

Mmake is built on top of GNU Make. With Mmake, building even a complicated Mercury
program consisting of a number of modules is as simple as

mmc -f source-files
mmake main-module.depend
mmake main-module

Mmake only recompiles those files that need to be recompiled, based on automatically
generated dependency information. Most of the dependencies are stored in ‘.d’ files that
are automatically recomputed every time you recompile, so they are never out-of-date. A
little bit of the dependency information is stored in ‘.dep’ and ‘.dv’ files which are more
expensive to recompute. The ‘mmake main-module.depend’ command which recreates the
‘main-module.dep’ and ‘main-module.dv’ files needs to be repeated only when you either
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add a module to your program or remove a module from it. There is no danger of getting
an inconsistent executable if you forget this step — instead you will get a compile or link
error.

The ‘mmc -f’ step above is only required if there are any source files for which the file
name does not match the module name. ‘mmc -f’ generates a file named ‘Mercury.modules’
containing a mapping from module name to source file. The ‘Mercury.modules’ file must
be updated when a source file for which the file name does not match the module name is
added to or removed from the directory.

‘mmake’ allows you to build more than one program in the same directory. Each
program must have its own ‘.dep’ and ‘.dv’ files, and therefore you must run ‘mmake
program.depend’ for each program. The ‘Mercury.modules’ file is used for all programs
in the directory.

If there is a file called ‘Mmake’ or ‘Mmakefile’ in the current directory, Mmake will include
that file in its automatically generated Makefile. The ‘Mmake’ file can override the default
values of various variables used by Mmake’s builtin rules, or it can add additional rules,
dependencies, and actions.

Mmake’s builtin rules are defined by the file ‘prefix/lib/mercury/mmake/Mmake.rules’
(where prefix is ‘/usr/local/mercury-version’ by default, and version is the version
number, e.g. ‘0.6’), as well as the rules and variables in the automatically generated .dep’
and ‘.dv’ files. These rules define the following targets:

‘main-module.depend’
Creates the files ‘main-module.dep’ and ‘main-module.dv’ from ‘main-
module.m’ and the modules it imports. This step must be performed first.
It is also required whenever you wish to change the level of inter-module
optimization performed (see Section 9.10.1 [Overall optimization options],
page 120).

‘main-module.all_ints’
Ensure that the interface files for main-module and its imported modules are
up-to-date. (If the underlying ‘make’ program does not handle transitive depen-
dencies, this step may be necessary before attempting to make ‘main-module’ or
‘main-module.check’; if the underlying ‘make’ is GNU Make, this step should
not be necessary.)

‘main-module.check’
Perform semantic checking on main-module and its imported modules. Error
messages are placed in ‘.err’ files.

‘main-module’
Compiles and links main-module using the Mercury compiler. Error messages
are placed in ‘.err’ files.

‘libmain-module’
Builds a library whose top-level module is main-module. This will build a
static object library, a shared object library (for platforms that support it), and
the necessary interface files. For more information, see Chapter 6 [Libraries],
page 11.
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‘libmain-module.install’

Builds and installs a library whose top-level module is main-module. This target
will build and install a static object library and (for platforms that support it)
a shared object library, for the default grade and also for the additional grades
specified in the LIBGRADES variable. It will also build and install the necessary
interface files. The variable INSTALL specifies the name of the command to use
to install each file, by default ‘cp’. The variable INSTALL_MKDIR specifies the
command to use to create directories, by default ‘mkdir -p’.

‘main-module.clean’
Removes the automatically generated files that contain the compiled code of
the program and the error messages produced by the compiler. Specifically, this
will remove all the ‘.c’, ‘.0’, ‘.pic_o’, ‘.prof’, ‘.used’, ‘.mih’, and ‘.err’ files
belonging to the named main-module or its imported modules. Use this target
whenever you wish to change compilation model (see Section 9.8 [Compilation
model options], page 110). This target is also recommended whenever you wish
to change the level of inter-module optimization performed (see Section 9.10.1
[Overall optimization options|, page 120) in addition to the mandatory main-

module.depend.

‘main-module.realclean’

Removes all the automatically generated files. In addition to the files
removed by main-module.clean, this removes the ‘.int’, ‘.intQ’, ‘.int2’,
‘.int3’, ‘.opt’, ‘.trams_opt’, ‘.date’, ‘.dateO’, ‘.date3’, ‘.optdate’,
‘.trans_opt_date’, ‘.mh’ and ‘.d’ files belonging to one of the modules of the
program, and also the various possible executables, libraries and dependency
files for the program as a whole — ‘main-module’, ‘libmain-module.a’,
‘libmain-module.so’, ‘libmain-module.dylib’, ‘main-module.init’,
‘main-module.dep’ and ‘main-module.dv’.

‘clean’ This makes ‘main-module.clean’ for every main-module for which there is a
‘main-module.dep’ file in the current directory, as well as deleting the profil-
ing files ‘Prof.CallPair’, ‘Prof.Counts’, ‘Prof.Decl’, ‘Prof.MemWords’ and
‘Prof .MemCells’.

‘realclean’
This makes ‘main-module.realclean’ for every main-module for which there
is a ‘main-module.dep’ file in the current directory, as well as deleting the
profiling files as per the ‘clean’ target.

The variables used by the builtin rules (and their default values) are defined in the
file ‘prefix/lib/mercury/mmake/Mmake.vars’, however these may be overridden by user
‘Mmake’ files. Some of the more useful variables are:

MAIN_TARGET
The name of the default target to create if ‘mmake’ is invoked with any target
explicitly named on the command line.

MC The executable that invokes the Mercury compiler.
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GRADEFLAGS and EXTRA_GRADEFLAGS
Compilation model options (see Section 9.8 [Compilation model options],
page 110) to pass to the Mercury compiler, linker, and other tools (in
particular mmc, mgnuc, m1, and c2init).

MCFLAGS and EXTRA_MCFLAGS
Options to pass to the Mercury compiler. (Note that compilation model options
should be specified in GRADEFLAGS, not in MCFLAGS.)

MGNUC The executable that invokes the C compiler.

MGNUCFLAGS and EXTRA_MGNUCFLAGS
Options to pass to the mgnuc script.

CFLAGS and EXTRA_CFLAGS
Options to pass to the C compiler.

JAVACFLAGS and EXTRA_JAVACFLAGS
Options to pass to the Java compiler (if you are using it).

ML The executable that invokes the linker.

LINKAGE Can be set to either ‘shared’ to link with shared libraries, or ‘static’ to always
link statically. The default is ‘shared’. This variable only has an effect with
‘mmc --make’.

MERCURY_LINKAGE
Can be set to either ‘shared’ to link with shared Mercury libraries, or ‘static’
to always link with the static versions of Mercury libraries. The default is
system dependent. This variable only has an effect with ‘mmc --make’. See
Section 6.2.2 [Using installed libraries with mmec —make], page 12.

MLFLAGS and EXTRA_MLFLAGS
Options to pass to the ml and c2init scripts. (Note that compilation model
options should be specified in GRADEFLAGS, not in MLFLAGS.) These variables
have no effect with ‘mmc --make’.

LDFLAGS and EXTRA_LDFLAGS
Options to pass to the command used by the ml script to link executables (use
ml --print-link-command to find out what command is used, usually the C
compiler).

LD_LIBFLAGS and EXTRA_LD_LIBFLAGS
Options to pass to the command used to by the ml script to link shared
libraries (use ml --print-shared-lib-link-command to find out what com-
mand is used, usually the C compiler or the system linker, depending on the
platform).

MLLIBS and EXTRA_MLLIBS
A list of ‘=1’ options specifying libraries used by the program (or library) that
you are building. See Section 6.3.3 [Using libraries with Mmake|, page 15. See
Section 6.2.2 [Using installed libraries with mmc —make], page 12.
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MLOBJS and EXTRA_MLOBJS
A list of extra object files or archives to link into the program or library that
you are building.

C2INITFLAGS and EXTRA_C2INITFLAGS
Options to pass to the linker and the c2init program. C2INITFLAGS and EXTRA_
C2INITFLAGS are obsolete synonyms for MLFLAGS and EXTRA_MLFLAGS (ml and
c2init take the same set of options). (Note that compilation model options
and extra files to be processed by c2init should not be specified in C2INITFLAGS
— they should be specified in GRADEFLAGS and C2INITARGS, respectively.)

C2INITARGS and EXTRA_C2INITARGS
Extra files to be processed by c2init. These variables should not be used for
specifying flags to c2init (those should be specified in MLFLAGS) since they are
also used to derive extra dependency information.

EXTRA_LIBRARIES
A list of extra Mercury libraries to link into any programs or libraries that
you are building. Libraries should be specified using their base name; that
is, without any ‘1ib’ prefix or extension. For example, the library including
the files ‘libfoo.a’ and ‘foo.init’ would be referred to as just ‘foo’. See
Section 6.3.3 [Using libraries with Mmake], page 15. See Section 6.2.2 [Using
installed libraries with mmc —make], page 12.

EXTRA_LIB_DIRS
A list of extra Mercury library directory hierarchies to search when looking for
extra libraries. See Section 6.3.3 [Using libraries with Mmake], page 15. See
Section 6.2.2 [Using installed libraries with mmec —make], page 12.

INSTALL_PREFIX
The path to the root of the directory hierarchy where the libraries, etc. you are
building should be installed. The default is to install in the same location as
the Mercury compiler being used to do the install.

INSTALL  The command used to install each file in a library. The command should take
a list of files to install and the location to install them. The default command
is ‘cp’.

INSTALL_MKDIR
The command used to create each directory in the directory hierarchy where
the libraries are to be installed. The default command is ‘mkdir -p’.

LIBGRADES
A list of additional grades which should be built when installing libraries. The
default is to install the Mercury compiler’s default set of grades. Note that
this may not be the set of grades in which the standard libraries were actually
installed. Note also that any GRADEFLAGS settings will also be applied when the
library is built in each of the listed grades, so you may not get what you expect
if those options are not subsumed by each of the grades listed.
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LIB_LINKAGES
A list of linkage styles (‘shared’ or ‘static’) for which libraries should be built
and installed. The default is to install libraries for both static and shared
linking. This variable only has an effect with ‘mmc --make’.

Other variables also exist — see ‘prefix/lib/mercury/mmake/Mmake.vars’ for a com-
plete list.

If you wish to temporarily change the flags passed to an executable, rather than setting
the various ‘FLAGS’ variables directly, you can set an ‘EXTRA_’ variable. This is particularly
intended for use where a shell script needs to call mmake and add an extra parameter,
without interfering with the flag settings in the ‘Mmakefile’.

For each of the variables for which there is version with an ‘EXTRA_’ prefix, there is also
a version with an ‘ALL_’ prefix that is defined to include both the ordinary and the ‘EXTRA_’
version. If you wish to use the values any of these variables in your Mmakefile (as opposed
to setting the values), then you should use the ‘ALL_’ version.

It is also possible to override these variables on a per-file basis. For example, if you
have a module called say ‘bad_style.m’ which triggers lots of compiler warnings, and you
want to disable the warnings just for that file, but keep them for all the other modules,
then you can override MCFLAGS just for that file. This is done by setting the variable
‘MCFLAGS-bad_style’, as shown here:

MCFLAGS-bad_style = --inhibit-warnings
Mmake has a few options, including ‘--use-subdirs’, ‘--use-mmc-make’,
‘--save-makefile’, ‘--verbose’, and ‘--no-warn-undefined-vars’. For details about

these options, see the man page or type ‘mmake --help’.

Finally, since Mmake is built on top of GNU Make, you can also make use of the features
and options supported by the underlying Make. In particular, GNU Make has support for
running jobs in parallel, which is very useful if you have a machine with more than one
CPU.

As an alternative to Mmake, the Mercury compiler now contains a significant part of
the functionality of Mmake, using ‘mmc’’s ‘--make’ option.

The advantages of the ‘mmc --make’ over Mmake are that there is no ‘mmake depend’
step and the dependencies are more accurate.

Note that ‘--—use-subdirs’ is automatically enabled if you specify ‘mmc --make’.

The Mmake variables above can be used by ‘mmc --make’ if they are set in a file called
‘Mercury.options’. The ‘Mercury.options’ file has the same syntax as an Mmakefile,
but only variable assignments and ‘include’ directives are allowed. All variables in
‘Mercury.options’ are treated as if they are assigned using ‘:=’". Variables may also be

set in the environment, overriding settings in options files.

‘mmc --make’ can be used in conjunction with Mmake. This is useful for projects which
include source code written in languages other than Mercury. The ‘--use-mmc-make’
Mmake option disables Mmake’s Mercury-specific rules. Mmake will then process source
files written in other languages, but all Mercury compilation will be done by ‘mmc --make’.
The following variables can be set in the Mmakefile to control the use of ‘mmc --make’.
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MERCURY_MAIN_MODULES
The top-level modules of the programs or libraries being built in the directory.
This must be set to tell Mmake to use ‘mmc --make’ to rebuild the targets for
the main modules even if those files already exist.

MC_BUILD_FILES
Other files which should be built with ‘mmc --make’. This should only be nec-
essary for header files generated by the Mercury compiler which are included
by the user’s C source files.

MC_MAKE_FLAGS and EXTRA_MC_MAKE_FLAGS
Options to pass to the Mercury compiler only when using ‘mmc --make’.

The following variables can also appear in options files but are only supported by
‘mmc —-make’.

GCC_FLAGS
Options to pass to the C compiler, but only if the C compiler is GCC. If the C
compiler is not GCC then this variable is ignored. These options will be passed
after any options given by the ‘CFLAGS’ variable.

CLANG_FLAGS
Options to pass to the C compiler, but only if the C compiler is clang. If the C
compiler is not clang then this variable is ignored. These options will be passed
after any options given by the ‘CFLAGS’ variable.

MSVC_FLAGS
Options to pass to the C compiler, but only if the C compiler is Microsoft Visual
C. If the C compiler is not Visual C then this variable is ignored. These options
will be passed after any options given by the ‘CFLAGS’ variable.

6 Libraries

Often you will want to use a particular set of Mercury modules in more than one pro-
gram. The Mercury implementation includes support for developing libraries, i.e. sets of
Mercury modules intended for reuse. It allows separate compilation of libraries and, on
many platforms, it supports shared object libraries.

6.1 Writing libraries

A Mercury library is identified by a top-level module, which should contain all of the modules
in that library as submodules. It may be as simple as this ‘mypackage.m’ file:

:— module mypackage.
:— interface.

:— include_module foo.
:— include_module bar.
:— include_module baz.

This defines a module ‘mypackage’ containing submodules ‘mypackage.foo’,
‘mypackage.bar’, and ‘mypackage.baz’.
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It is also possible to build libraries of unrelated modules, so long as the top-level module
imports all the necessary modules. For example:

:— module blah.

:— implementation.

:— import_module fee.
:— import_module fie.
:— import_module foe.
:— import_module fum.

This example defines a module ‘blah’, which has no functionality of its own, and which
is just used for grouping the unrelated modules ‘fee’, ‘fie’, ‘foe’, and ‘fum’. To avoid
a warning about the interface of this module being empty, this module would have to be
compiled with ‘~-no-warn-nothing-exported’. Alternatively, the library could of course
just export something, such as a predicate that returns its version number.

Generally it is better style for each library to consist of a single module which encapsu-
lates its submodules, as in the first example, rather than just a group of unrelated modules,
as in the second example.

6.2 Building with mmc —make

6.2.1 Building and installing libraries with mmc —make

To build a library from the source ‘mypackage.m’ (and other included modules), run ‘mmc’
with the following arguments:

mmc --make libmypackage

‘mmc’ will create static (non-shared) object libraries and, on most platforms, shared object
libraries; however, we do not yet support the creation of dynamic link libraries (DLLs) on
Windows. Use the ‘mmc’ option ‘--1ib-linkage’ to specify which versions of the library
should be created: ‘shared’ or ‘static’. The ‘--lib-linkage’ option can be specified
multiple times. In our example, the files ‘libmypackage.a’ and ‘libmypackage.so’ should
appear in the current directory. (On macOS ‘libmypackage.dylib’ will appear instead of
‘libmypackage.so’.)

Other programs can more easily use a library that is installed. To install the library,
issue the following command:

mmc --make --install-prefix <dir> libmypackage.install

‘mmc’ will create the directory ‘<dir>/lib/mercury’ and install the library there. The
library will be compiled in all valid grades and with all interface files. Because several grades
are usually compiled, installing the library can be a lengthy process. You can specify the
set of installed grades using the option ‘--no-libgrade’ followed by ‘--1ibgrade <grade>’
for all grades you wish to install.

If no ‘--install-prefix <dir>’ is specified, the library will be installed in the standard
location, next to the Mercury standard library.

6.2.2 Using installed libraries with mmc —make

Once a library is installed, it can be used by running ‘mmc’ with the following options:
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mmc ... —-ml mypackage ... --ml myotherlib ... --ml my_yet_another_lib ...

If a library was installed in a different place (using ‘--install-prefix <dir>’), you will
also need to add this option:

mmc ... --mld <dir>/lib/mercury ...

Note that ‘/1lib/mercury’ has to be added to the searched path. The ‘--mld’ option can
be used several times to add more directories to the library search path.

You can also specify whether to link executables with the shared or static versions of
Mercury libraries using ‘--mercury-linkage shared’ or ‘-—-mercury-linkage static’.

6.2.3 Using non-installed libraries with mmc —make

Suppose the user wants to link against library ‘mypackage’ without installing the library.
The source of the library is stored in the directory ‘<dir>’ and that the library has been
properly built using ‘mmc --make libmypackage’. To link against the library, the following
options have to be added to ‘mmc’:
mmc ... --search-lib-files-dir <dir> \
--init-file <dir>/mypackage.init \
—--link-object <dir>/libmypackage.a \

Note that the option ‘--ml’ is not used.

You need to make sure the library ‘libmypackage.a’ and the main program were com-
piled in the same grade.

If you need to experiment with more grades, be sure to build the library in all the grades
(building several times using ‘mmc --grade <grade> --make libmypackage’) and use the
‘libmypackage.a’ that is compatible with your main program’s grade

mmc ... —-use-grade-subdirs \
--grade <grade> \
--search-lib-files-dir <dir> \
--init-file <dir>/mypackage.init \

--link-object <dir>/Mercury/<grade>/*/Mercury/lib/libmypackage.

6.3 Building with Mmake

6.3.1 Building libraries with Mmake

Generally Mmake will do most of the work of building libraries automatically. Here is a
sample Mmakefile for creating a library.
MAIN_TARGET = libmypackage
depend: mypackage.depend
The Mmake target ‘libfoo’ is a builtin target for creating a library whose top-level
module is ‘foo.m’. The automatically generated Mmake rules for the target ‘libfoo’ will
create all the files needed to use the library. (You will need to run ‘mmake foo.depend’ first
to generate the module dependency information.)
Mmake will create static (non-shared) object libraries and, on most platforms, shared
object libraries; however, we do not yet support the creation of dynamic link libraries (DLLs)

a \
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on Windows. Static libraries are created using the standard tools ar and ranlib. Shared
libraries are created using the ‘--make-shared-1ib’ option to ‘ml’. The automatically
generated Make rules for ‘libmypackage’ will look something like this:

libmypackage: libmypackage.a libmypackage.so \
$ (mypackage.ints) $(mypackage.int3s) \
$ (mypackage.opts) $(mypackage.trans_opts) mypackage.init

libmypackage.a: $(mypackage.os)
rm -f libmypackage.a
$ (AR) $(ARFLAGS) libmypackage.a $(mypackage.os) $(MLOBJS)
$ (RANLIB) $(RANLIBFLAGS) mypackage.a

libmypackage.so: $(mypackage.pic_os)
$ (ML) $(MLFLAGS) --make-shared-1ib -o libmypackage.so \
$ (mypackage.pic_os) $(MLPICOBJS) $(MLLIBS)

libmypackage.init:

clean:
rm —-f libmypackage.a libmypackage.so

If necessary, you can override the default definitions of the variables such as ‘ML’,
‘MLFLAGS’, ‘MLPICOBJS’, and ‘MLLIBS’ to customize the way shared libraries are built. Simi-
larly ‘AR’, ‘ARFLAGS’, ‘MLOBJS’, ‘RANLIB’, and ‘RANLIBFLAGS’ control the way static libraries
are built. (The ‘MLOBJS’ variable is supposed to contain a list of additional object files to
link into the library, while the ‘MLLIBS’ variable should contain a list of ‘-1’ options naming
other libraries used by this library. ‘MLPICOBJS’ is described below.)

Note that to use a library, as well as the shared or static object library, you also need
the interface files. That is why the ‘libmypackage’ target builds ‘$ (mypackage.ints)’ and
‘$ (mypackage.int3s)’. If the people using the library are going to use intermodule opti-
mization, you will also need the intermodule optimization interfaces. The ‘libmypackage’
target will build ‘$(mypackage.opts)’ if ‘~-intermodule-optimization’ is specified in
your ‘MCFLAGS’ variable (this is recommended). Similarly, if the people using the library
are going to use transitive intermodule optimization, you will also need the transitive
intermodule optimization interfaces (‘$(mypackage.trans_opt)’). These will be built if
‘-—trans-intermod-opt’ is specified in your ‘MCFLAGS’ variable.

In addition, with certain compilation grades, programs will need to execute some startup
code to initialize the library; the ‘mypackage.init’ file contains information about initial-
ization code for the library. The ‘libmypackage’ target will build this file.

On some platforms, shared objects must be created using position independent code
(PIC), which requires passing some special options to the C compiler. On these plat-
forms, Mmake will create ‘.pic_o’ files, and ‘$(mypackage.pic_os)’ will contain a list
of the ‘.pic_o’ files for the library whose top-level module is ‘mypackage’. In addition,
‘$ (MLPICOBJS)’ will be set to ‘$MLOBJS’ with all occurrences of ‘.o’ replaced with ‘.pic_o’.
On other platforms, position independent code is the default, so ‘$ (mypackage.pic_os)’
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will just be the same as ‘$ (mypackage.os)’, which contains a list of the ‘.o’ files for that
module, and ‘$ (MLPICOBJS)’ will be the same as ‘$ (MLOBJS)’.

6.3.2 Installing libraries with Mmake

‘mmake’ has support for alternative library directory hierarchies. These have the same struc-
ture as the ‘prefix/lib/mercury’ tree, including the different subdirectories for different
grades and different machine architectures.

In order to support the installation of a library into such a tree, you simply need to
specify (e.g. in your ‘Mmakefile’) the path prefix and the list of grades to install:

INSTALL_PREFIX = /my/install/dir
LIBGRADES = asm_fast asm_fast.gc.tr.debug

This specifies that libraries should be installed in ‘/my/install/dir/lib/mercury’, in
the default grade plus ‘asm_fast’ and ‘asm_fast.gc.tr.debug’. If ‘INSTALL_PREFIX’ is
not specified, ‘mmake’ will attempt to install the library in the same place as the standard
Mercury libraries. If ‘LIBGRADES’ is not specified, ‘mmake’ will use the Mercury compiler’s
default set of grades, which may or may not correspond to the actual set of grades in which
the standard Mercury libraries were installed.

To actually install a library ‘libfoo’, use the ‘mmake’ target ‘libfoo.install’. This
also installs all the needed interface files, and (if intermodule optimisation is enabled) the
relevant intermodule optimisation files.

One can override the list of grades to install for a given library ‘libfoo’ by setting the
‘LIBGRADES-foo’ variable, or add to it by setting ‘EXTRA_LIBGRADES-foo’.

The command used to install each file is specified by ‘INSTALL’. If ‘INSTALL’ is not
specified, ‘cp’ will be used.

The command used to create directories is specified by ‘INSTALL_MKDIR’. If
‘INSTALL_MKDIR’ is not specified, ‘mkdir -p’ will be used.

Note that currently it is not possible to set the installation prefix on a library-by-library
basis.

6.3.3 Using libraries with Mmake

Once a library is installed, using it is easy. Suppose the user wishes to use the library
‘mypackage’ (installed in the tree rooted at ‘/some/directory/mypackage’) and the library
‘myotherlib’ (installed in the tree rooted at ‘/some/directory/myotherlib’). The user
need only set the following Mmake variables:

EXTRA_LIB_DIRS = /some/directory/mypackage/lib/mercury \
/some/directory/myotherlib/lib/mercury
EXTRA_LIBRARIES = mypackage myotherlib
When using ‘--intermodule-optimization’ with a library which uses the C interface,
it may be necessary to add ‘-I’ options to ‘MGNUCFLAGS’ so that the C compiler can find
any header files used by the library’s C code.
Mmake will ensure that the appropriate directories are searched for the relevant interface
files, module initialisation files, compiled libraries, etc.
Beware that the directory name that you must use in ‘EXTRA_LIB_DIRS’ or as the ar-
gument of the ‘--mld’ option is not quite the same as the name that was specified in the
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‘INSTALL_PREFIX’ when the library was installed — the name needs to have ‘/1ib/mercury’
appended.

One can specify extra libraries to be used on a program-by-program basis. For instance,
if the program ‘foo’ also uses the library ‘mylib4foo’, but the other programs governed by
the Mmakefile don’t, then one can declare:

EXTRA_LIBRARIES-foo = mylib4foo

6.4 Libraries and the Java grade
To create or install a library in the Java grade, specify that you want to use the Java grade
and use ‘mmc --make’. Mmake does not support Java targets.

Libraries are compiled to class files that are added to a Java archive (JAR) file whose
name has the form ‘Iibrary-name. jar’.

6.5 Libraries and the C# grade

To create or install a library in the C# grade, specify that you want to use the C# grade
and use ‘mmc --make’. Mmake does not support C# targets.

Libraries are complied to a dynamic link library assembly whose name has the form
‘library-name.dll’.

7 Debugging

7.1 Quick overview

This section gives a quick and simple guide to getting started with the debugger. The
remainder of this chapter contains more detailed documentation.

To use the debugger, you must first compile your program with debugging enabled.
You can do this by using one of the ‘--debug’ or ‘--decl-debug’ options when invoking
‘mmc’; or by including ‘GRADEFLAGS = --debug’ or ‘GRADEFLAGS = --decl-debug’ in your
‘Mmakefile’.

bash$ mmc --debug hello.m

Once you have compiled with debugging enabled, you can use the ‘mdb’ command to
invoke your program under the debugger:

bash$ mdb ./hello argl arg2 ...
Any arguments (such as ‘argl arg?2 ...’ in this example) that you pass after the program
name will be given as arguments to the program.
The debugger will print a start-up message and will then show you the first trace event,
namely the call to main/2:
1: 1 1 CALL pred hello:main/2-0 (det)
hello.m:13
mdb>
By hitting enter at the ‘mdb>’ prompt, you can step through the execution of your
program to the next trace event:
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2: 2 2 CALL pred io:write_string/3-0 (det)
i0.m:2837 (hello.m:14)
mdb>
Hello, world
3: 2 2 EXIT pred io:write_string/3-0 (det)
i0.m:2837 (hello.m:14)
mdb>

For each trace event, the debugger prints out several pieces of information. The three
numbers at the start of the display are the event number, the call sequence number, and
the call depth. (You don’t really need to pay too much attention to those.) They are
followed by the event type (e.g. ‘CALL’ or ‘EXIT’). After that comes the identification of
the procedure in which the event occurred, consisting of the module-qualified name of the
predicate or function to which the procedure belongs, followed by its arity, mode number
and determinism. This may sometimes be followed by a “path” (see Section 7.3 [Tracing
of Mercury programs|, page 19). At the end is the file name and line number of the called
procedure and (if available) also the file name and line number of the call.

The most useful mdb commands have single-letter abbreviations. The ‘alias’ command
will show these abbreviations:

mdb> alias

? => help
EMPTY => step
NUMBER => step

P => print *
b => break

c => continue
d => stack

f => finish
g => goto

h => help

P => print

r => retry

s => step

v => vars

The ‘P’ or ‘print *’ command will display the values of any live variables in scope. The
‘f” or ‘finish’ command can be used if you want to skip over a call. The ‘b’ or ‘break’
command can be used to set breakpoints. The ‘d’ or ‘stack’ command will display the call
stack. The ‘quit’ command will exit the debugger.

That should be enough to get you started. But if you are a GNU Emacs user, you should
strongly consider using the Emacs interface to ‘mdb’ — see the following section.

For more information about the available commands, use the ‘?” or ‘help’ command, or
see Section 7.10 [Debugger commands]|, page 31.
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7.2 GNU Emacs interface

As well as the command-line debugger, mdb, there is also an Emacs interface to this de-
bugger. Note that the Emacs interface only works with GNU Emacs, not with XEmacs.

With the Emacs interface, the debugger will display your source code as you trace
through it, marking the line that is currently being executed, and allowing you to easily set
breakpoints on particular lines in your source code. You can have separate windows for the
debugger prompt, the source code being executed, and for the output of the program being
executed. In addition, most of the mdb commands are accessible via menus.

To start the Emacs interface, you first need to put the following text in the ‘.emacs’

file in your home directory, replacing “/usr/local/mercury-1.0” with the directory that your
Mercury implementation was installed in:

(setq load-path (cons (expand-file-name
"/usr/local/mercury-1.0/1lib/mercury/elisp")
load-path))

(autoload ’mdb "gud" "Invoke the Mercury debugger" t)

Build your program with debugging enabled, as described in Section 7.1 [Quick overview],
page 16 or Section 7.4 [Preparing a program for debugging], page 22. Then start up Emacs,
e.g. using the command ‘emacs’, and type M-x mdb RET. Emacs will then prompt you for
the mdb command to invoke

Run mdb (like this): mdb

and you should type in the name of the program that you want to debug and any arguments
that you want to pass to it:

Run mdb (like this): mdb ./hello argl arg2 ...

Emacs will then create several “buffers”: one for the debugger prompt, one for the input
and output of the program being executed, and one or more for the source files. By default,
Emacs will split the display into two parts, called “windows”, so that two of these buffers
will be visible. You can use the command C-x o to switch between windows, and you can
use the command C-x 2 to split a window into two windows. You can use the “Buffers”
menu to select which buffer is displayed in each window.

If you are using X-Windows, then it is a good idea to set the Emacs variable
‘pop—up-frames’ to ‘t’ before starting mdb, since this will cause each buffer to be displayed
in a new “frame” (i.e. a new X window). You can set this variable interactively using the
‘set-variable’ command, i.e. M-x set-variable RET pop-up-frames RET t RET. Or you
can put ‘(setq pop-up-frames t)’ in the ‘.emacs’ file in your home directory.

For more information on buffers, windows, and frames, see the Emacs documentation.

Another useful Emacs variable is ‘gud-mdb-directories’. This specifies the list of
directories to search for source files. You can use a command such as

M-x set-variable RET

gud-mdb-directories RET

(1ist "/foo/bar" "../other" "/home/guest") RET
to set it interactively, or you can put a command like

(setq gud-mdb-directories
(l1ist "/foo/bar" "../other" "/home/guest"))
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in your ‘.emacs’ file.

At each trace event, the debugger will search for the source file corresponding to that
event, first in the same directory as the program, and then in the directories specified by
the ‘gud-mdb-directories’ variable. It will display the source file, with the line number
corresponding to that trace event marked by an arrow (‘=>") at the start of the line.

Several of the debugger features can be accessed by moving the cursor to the relevant
part of the source code and then selecting a command from the menu. You can set a break
point on a line by moving the cursor to the appropriate line in your source code (e.g. with
the arrow keys, or by clicking the mouse there), and then selecting the “Set breakpoint
on line” command from the “Breakpoints” sub-menu of the “MDB” menu. You can set a
breakpoint on a procedure by moving the cursor over the procedure name and then selecting
the “Set breakpoint on procedure” command from the same menu. And you can display
the value of a variable by moving the cursor over the variable name and then selecting the
“Print variable” command from the “Data browsing” sub-menu of the “MDB” menu. Most
of the menu commands also have keyboard short-cuts, which are displayed on the menu.

Note that ‘mdb’’s ‘context’ and ‘user_event_context’ commands should not be used
if you are using the Emacs interface, otherwise the Emacs interface won’t be able to parse
the file names and line numbers that ‘mdb’ outputs, and so it won’t be able to highlight the
correct location in the source code.

7.3 Tracing of Mercury programs

The Mercury debugger is based on a modified version of the box model on which the four-
port debuggers of most Prolog systems are based. Such debuggers abstract the execution
of a program into a sequence, also called a trace, of execution events of various kinds. The
four kinds of events supported by most Prolog systems (their ports) are

call A call event occurs just after a procedure has been called, and control has just
reached the start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and control is about
to return to its caller.

redo A redo event occurs when all computations to the right of a procedure call
have failed, and control is about to return to this call to try to find alternative
solutions.

fail A fail event occurs when a procedure call has run out of alternatives, and control

is about to return to the rightmost computation to its left that still has possibly
successful alternatives left.

Mercury also supports these four kinds of events, but not all events can occur for every
procedure call. Which events can occur for a procedure call, and in what order, depend
on the determinism of the procedure. The possible event sequences for procedures of the
various determinisms are as follows.

nondet procedures
a call event, zero or more repeats of (exit event, redo event), and a fail event

multi procedures
a call event, one or more repeats of (exit event, redo event), and a fail event
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semidet and cc_nondet procedures

a call event, and either an exit event or a fail event

det and cc_multi procedures

a call event and an exit event

failure procedures

a call event and a fail event

erroneous pTOC@dUTES

a call event

In addition to these four event types, Mercury supports exception events. An exception
event occurs when an exception has been thrown inside a procedure, and control is about
to propagate this exception to the caller. An exception event can replace the final exit or
fail event in the event sequences above or, in the case of erroneous procedures, can come
after the call event.

Besides the event types call, exit, redo, fail and exception, which describe the interface
of a call, Mercury also supports several types of events that report on what is happening
internal to a call. Each of these internal event types has an associated parameter called a
path. The internal event types are:

cond

then

else

disj

switch

neg-enter

neg_fail

neqg-Success

A cond event occurs when execution reaches the start of the condition of an
if-then-else. The path associated with the event specifies which if-then-else this
is.

A then event occurs when execution reaches the start of the then part of an
if-then-else. The path associated with the event specifies which if-then-else this
is.

An else event occurs when execution reaches the start of the else part of an
if-then-else. The path associated with the event specifies which if-then-else this
is.

A disj event occurs when execution reaches the start of a disjunct in a dis-
junction. The path associated with the event specifies which disjunct of which
disjunction this is.

A switch event occurs when execution reaches the start of one arm of a switch
(a disjunction in which each disjunct unifies a bound variable with different
function symbol). The path associated with the event specifies which arm of
which switch this is.

A neg_enter event occurs when execution reaches the start of a negated goal.
The path associated with the event specifies which negation goal this is.

A neg_fail event occurs when a goal inside a negation succeeds, which means
that its negation fails. The path associated with the event specifies which
negation goal this is.

A neg_success event occurs when a goal inside a negation fails, which means
that its negation succeeds. The path associated with the event specifies which
negation goal this is.
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A goal path is a sequence of path components separated by semicolons. Each path
component is one of the following:

cnum The num’th conjunct of a conjunction.
dnum The num’th disjunct of a disjunction.
snum The num’th arm of a switch.

? The condition of an if-then-else.

t The then part of an if-then-else.

e The else part of an if-then-else.

The goal inside a negation.

q! The goal inside an existential quantification or other scope that changes the
determinism of the goal.

q The goal inside an existential quantification or other scope that doesn’t change
the determinism of the goal.

A goal path describes the position of a goal inside the body of a procedure definition.
For example, if the procedure body is a disjunction in which each disjunct is a conjunction,
then the goal path ‘d2;c3;’ denotes the third conjunct within the second disjunct. If the
third conjunct within the second disjunct is an atomic goal such as a call or a unification,
then this will be the only goal with whose path has ‘d2;c3;’ as a prefix. If it is a compound
goal, then its components will all have paths that have ‘d2;c3;’ as a prefix, e.g. if it is
an if-then-else, then its three components will have the paths ‘d2;c3;7;’, ‘d2;c3;t;  and
‘d2;c3;e;’ .

Goal paths refer to the internal form of the procedure definition. When debugging is
enabled (and the option ‘--trace-optimized’ is not given), the compiler will try to keep
this form as close as possible to the source form of the procedure, in order to make event
paths as useful as possible to the programmer. Due to the compiler’s flattening of terms,
and its introduction of extra unifications to implement calls in implied modes, the number
of conjuncts in a conjunction will frequently differ between the source and internal form of a
procedure. This is rarely a problem, however, as long as you know about it. Mode reordering
can be a bit more of a problem, but it can be avoided by writing single-mode predicates
and functions so that producers come before consumers. The compiler transformation that
potentially causes the most trouble in the interpretation of goal paths is the conversion of
disjunctions into switches. In most cases, a disjunction is transformed into a single switch,
and it is usually easy to guess, just from the events within a switch arm, just which disjunct
the switch arm corresponds to. Some cases are more complex; for example, it is possible
for a single disjunction to be transformed into several switches, possibly with other, smaller
disjunctions inside them. In such cases, making sense of goal paths may require a look
at the internal form of the procedure. You can ask the compiler to generate a file with
the internal forms of the procedures in a given module by including the options ‘~dfinal
-Dpaths’ on the command line when compiling that module.
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7.4 Preparing a program for debugging

When you compile a Mercury program, you can specify whether you want to be able to
run the Mercury debugger on the program or not. If you do, the compiler embeds calls to
the Mercury debugging system into the executable code of the program, at the execution
points that represent trace events. At each event, the debugging system decides whether
to give control back to the executable immediately, or whether to first give control to you,
allowing you to examine the state of the computation and issue commands.

Mercury supports two broad ways of preparing a program for debugging. The simpler
way is to compile a program in a debugging grade, which you can do directly by specifying
a grade that includes the word “debug” or “decldebug” (e.g. ‘asm_fast.gc.debug’,
or ‘asm_fast.gc.decldebug’), or indirectly by specifying one of the ‘--debug’ or
‘~—decl-debug’ grade options to the compiler, linker, and other tools (in particular mmc,
mgnuc, ml, and c2init). If you follow this way, and accept the default settings of the
various compiler options that control the selection of trace events (which are described
below), you will be assured of being able to get control at every execution point that
represents a potential trace event, which is very convenient.

The “decldebug” grades improve declarative debugging by allowing the user to track the
source of subterms (see Section 7.11.7 [Improving the search], page 74). Doing this increases
the size of executables, so these grades should only be used when you need the subterm
dependency tracking feature of the declarative debugger. Note that declarative debugging,
with the exception of the subterm dependency tracking features, also works in the .debug
grades.

The two drawbacks of using a debugging grade are the large size of the resulting exe-
cutables, and the fact that often you discover that you need to debug a big program only
after having built it in a non-debugging grade. This is why Mercury also supports another
way to prepare a program for debugging, one that does not require the use of a debugging
grade. With this way, you can decide, individually for each module, which of four trace
levels, ‘none’, ‘shallow’, ‘deep’, and ‘rep’ you want to compile them with:

‘none’ A procedure compiled with trace level ‘none’ will never generate any events.

‘deep’ A procedure compiled with trace level ‘deep’ will always generate all the events
requested by the user. By default, this is all possible events, but you can tell
the compiler that you are not interested in some kinds of events via compiler
options (see below). However, declarative debugging requires all events to be
generated if it is to operate properly, so do not disable the generation of any
event types if you want to use declarative debugging. For more details see
Section 7.11 [Declarative debugging], page 67.

‘rep This trace level is the same as trace level ‘deep’, except that a representation
of the module is stored in the executable along with the usual debugging in-
formation. The declarative debugger can use this extra information to help it
avoid asking unnecessary questions, so this trace level has the effect of better
declarative debugging at the cost of increased executable size. For more details
see Section 7.11 [Declarative debugging], page 67.

‘shallow’ A procedure compiled with trace level ‘shallow’ will generate interface events
if it is called from a procedure compiled with trace level ‘deep’, but it will
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never generate any internal events, and it will not generate any interface events
either if it is called from a procedure compiled with trace level ‘shallow’. If it is
called from a procedure compiled with trace level ‘none’; the way it will behave
is dictated by whether its nearest ancestor whose trace level is not ‘none’ has
trace level ‘deep’ or ‘shallow’.

The intended uses of these trace levels are as follows.

‘deep’ You should compile a module with trace level ‘deep’ if you suspect there may be
a bug in the module, or if you think that being able to examine what happens
inside that module can help you locate a bug.

rep You should compile a module with trace level ‘rep’ if you suspect there may be
a bug in the module, you wish to use the full power of the declarative debugger,
and you are not concerned about the size of the executable.

‘shallow’ You should compile a module with trace level ‘shallow’ if you believe the code
of the module is reliable and unlikely to have bugs, but you still want to be able
to get control at calls to and returns from any predicates and functions defined
in the module, and if you want to be able to see the arguments of those calls.

‘none’ You should compile a module with trace level ‘none’ only if you are reasonably
confident that the module is reliable, and if you believe that knowing what calls
other modules make to this module would not significantly benefit you in your
debugging.

In general, it is a good idea for most or all modules that can be called from modules
compiled with trace level ‘deep’ or ‘rep’ to be compiled with at least trace level ‘shallow’.

You can control what trace level a module is compiled with by giving one of the following
compiler options:

‘-—trace shallow’
This always sets the trace level to ‘shallow’.

‘-—trace deep’
This always sets the trace level to ‘deep’.

‘-—trace rep’
This always sets the trace level to ‘rep’.

‘~—trace minimum’
In debugging grades, this sets the trace level to ‘shallow’; in non-debugging
grades, it sets the trace level to ‘none’.

‘-—trace default’
In debugging grades, this sets the trace level to ‘deep’; in non-debugging grades,
it sets the trace level to ‘none’.

As the name implies, the last alternative is the default, which is why by default you get
no debugging capability in non-debugging grades and full debugging capability in debugging
grades. The table also shows that in a debugging grade, no module can be compiled with
trace level ‘none’.

Important note: If you are not using a debugging grade, but you compile some modules
with a trace level other than none, then you must also pass the ‘--trace’ (or ‘-t’) option to
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c2init and to the Mercury linker. If you are using Mmake, then you can do this by including
‘-—trace’ in the ‘MLFLAGS’ variable.

If you are using Mmake, then you can also set the compilation options for a single module
named Module by setting the Mmake variable ‘MCFLAGS-Module’. For example, to compile
the file ‘foo.m’ with deep tracing, ‘bar.m’ with shallow tracing, and everything else with
no tracing, you could use the following:

MLFLAGS = —-—-trace
MCFLAGS-foo --trace deep
MCFLAGS-bar -—-trace shallow

7.5 Tracing optimized code

By default, all trace levels other than ‘none’ turn off all compiler optimizations that can
affect the sequence of trace events generated by the program, such as inlining. If you are
specifically interested in how the compiler’s optimizations affect the trace event sequence,
you can specify the option ‘--trace-optimized’, which tells the compiler that it does not
have to disable those optimizations. (A small number of low-level optimizations have not
yet been enhanced to work properly in the presence of tracing, so the compiler disables
these even if ‘--trace-optimized’ is given.)

7.6 Mercury debugger invocation

The executables of Mercury programs by default do not invoke the Mercury debugger even if
some or all of their modules were compiled with some form of tracing, and even if the grade of
the executable is a debugging grade. This is similar to the behaviour of executables created
by the implementations of other languages; for example the executable of a C program
compiled with ‘-g’ does not automatically invoke gdb or dbx etc when it is executed.

Unlike those other language implementations, when you invoke the Mercury debugger
‘mdb’, you invoke it not just with the name of an executable but with the command line
you want to debug. If something goes wrong when you execute the command

prog argl arg2

and you want to find the cause of the problem, you must execute the command
mdb [mdb-options] prog argl arg2

because you do not get a chance to specify the command line of the program later.

When the debugger starts up, as part of its initialization it executes commands from the
following three sources, in order:

1. The file named by the MERCURY_DEBUGGER_INIT environment variable. Usually, ‘mdb’
sets this variable to point to a file that provides documentation for all the debugger
commands and defines a small set of aliases. However, if MERCURY_DEBUGGER_INIT is
already defined when ‘mdb’ is invoked, it will leave its value unchanged. You can use
this override ability to provide alternate documentation. If the file named by MERCURY _
DEBUGGER_INIT cannot be read, ‘mdb’ will print a warning, since in that case, that
usual online documentation will not be available.

2. The file named ‘.mdbrc’ in your home directory. You can put your usual aliases and
settings here.
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3. The file named ‘.mdbrc’ in the current working directory. You can put program-specific
aliases and settings here.

mdb will ignore any lines starting with the character ‘#’ in any of the above mentioned
files.

mdb accepts the following options from the command line. The options should be given
to mdb before the name of the executable to be debugged.

-t file-name, ——tty file-name
Redirect all of the I/O for the debugger to the device specified by file-name.
The I/0 for the program being debugged will not be redirected. This option
allows the contents of a file to be piped to the program being debugged and not
to mdb. For example, on Linux the command

mdb -t /dev/tty ./myprog < myinput

will cause the contents of ‘myinput’ to be piped to the program ‘myprog’, but
mdb will read its input from the terminal.

-w, ——window, ——mdb-in-window
Run mdb in a new window, with mdb’s I/O going to that window, but with
the program’s I/O going to the current terminal. Note that this will not work
on all systems.

--program-in-window
Run the program in a new window, with the program’s I/O going to that
window, but with mdb’s I/O going to the current terminal. Note that input
and output redirection will not work with the ‘--program-in-window’ option.
‘——program-in-window’ will work on most Unix systems running the X Window
System, even those for which ‘~-mdb-in-window’ is not supported.

-c window-command, —-window-command window-command
Specify the command used by the ‘--program-in-window’ option for executing
a command in a new window. The default such command is ‘xterm -e’.

7.7 Mercury debugger concepts
The operation of the Mercury debugger ‘mdb’ is based on the following concepts.

break points
The user may associate a break point with some events that occur inside a
procedure; the invocation condition of the break point says which events these
are. The four possible invocation conditions (also called scopes) are:

e the call event,
e all interface events,
e all events, and

e the event at a specific point in the procedure.
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The effect of a break point depends on the state of the break point.

e If the state of the break point is ‘stop’, execution will stop and user in-
teraction will start at any event within the procedure that matches the
invocation conditions, unless the current debugger command has specifi-
cally disabled this behaviour (see the concept ‘strict commands’ below).

e If the state of the break point is ‘print’, the debugger will print any event
within the procedure that matches the invocation conditions, unless the
current debugger command has specifically disabled this behaviour (see
the concept ‘print level’ below).

Neither of these will happen if the break point is disabled.

Every break point has a print list. Every time execution stops at an event that
matches the breakpoint, mdb implicitly executes a print command for each
element in the breakpoint’s print list. A print list element can be the word
‘goal’, which causes the goal to the printed as if by ‘print goal’; it can be
the word ‘*’, which causes all the variables to the printed as if by ‘print *’; or
it can be the name or number of a variable, possibly followed (without white
space) by a term path, which causes the specified variable or part thereof to the
printed as if the element were given as an argument to the ‘print’ command.

strict commands

print level

When a debugger command steps over some events without user interaction at
those events, the strictness of the command controls whether the debugger will
stop execution and resume user interaction at events to which a break point
with state ‘stop’ applies. By default, the debugger will stop at such events.
However, if the debugger is executing a strict command, it will not stop at an
event just because a break point in the stop state applies to it.

If the debugger receives an interrupt (e.g. if the user presses control-C), it will
stop at the next event regardless of what command it is executing at the time.

When a debugger command steps over some events without user interaction
at those events, the print level controls under what circumstances the stepped
over events will be printed.

e When the print level is ‘none’, none of the stepped over events will be
printed.

e When the print level is ‘all’, all the stepped over events will be printed.

e When the print level is ‘some’, the debugger will print the event only if a
break point applies to the event.
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Regardless of the print level, the debugger will print any event that causes
execution to stop and user interaction to start.

default print level
The debugger maintains a default print level. The initial value of this variable
is ‘some’, but this value can be overridden by the user.

current environment
Whenever execution stops at an event, the current environment is reset to refer
to the stack frame of the call specified by the event. However, the ‘up’, ‘down’
and ‘level’ commands can set the current environment to refer to one of the
ancestors of the current call. This will then be the current environment until
another of these commands changes the environment yet again or execution
continues to another event.

paths in terms

When browsing or printing a term, you can use "~‘n’" to refer to the nth sub-
term of that term. If the term’s type has named fields, you can use "~ ‘fname’"
to refer to the subterm of the field named ‘fname’. You can use several of these
subterm specifications in a row to refer to subterms deep within the original
term. For example, when applied to a list, "~2" refers to the tail of the list (the
second argument of the list constructor), "~2°2" refers to the tail of the tail of
the list, and "~272"1" refers to the head of the tail of the tail, i.e. to the third
element of the list. You can think of terms as Unix directories, with constants
(function symbols of arity zero) being plain files and function symbols of ar-
ity greater than zero being directories themselves. Each subterm specification
such as ""2" goes one level down in the hierarchy. The exception is the sub-
term specification "~..", which goes one level up, to the parent of the current
directory.

held variables
Normally, the only variables from the program accessible in the debugger are the
variables in the current environment at the current program point. However,
the user can hold variables, causing their values -or selected parts of their values-
to stay available for the rest of the debugger session. All the commands that
accept variable names also accept the names of held variables; users can ask for
a held variable by prefixing the name of the held variable with a dollar sign.

user defined events
Besides the builtin set of events, the Mercury debugger also supports events
defined by the user. Each event appears in the source code of the Mercury
program as a call prefixed by the keyword ‘event’, with each argument of the
call giving the value of an event attribute. Users can specify the set of user
defined events that can appear in a program, and the names, types and order
of the attributes of each kind of user defined event, by giving the name of an
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event set specification file to the compiler when compiling that program. For
more details, see Section 7.8 [User defined events|, page 29.

user defined event attributes
Normally, the only variables from the program accessible in the debugger are the
variables in the current environment at the current program point. However, if
the current event is a user defined event, then the attributes of that event are
also available. All the commands that accept variable names also accept the
names of attributes; users can ask for an attribute by prefixing the name of the
attribute with an exclamation point.

procedure specification
Some debugger commands, e.g. ‘break’, require a parameter that specifies a pro-
cedure. The procedure may or may not be a compiler-generated unify, compare
or index procedure of a type constructor. If it is, the procedure specification
has the following components in the following order:

An optional prefix of the form ‘unif#’) ‘comp*’, ‘indx*’ or ‘init*’, that
specifies whether the procedure belongs to a unify, compare, index or init
predicate.

An optional prefix of the form ‘module.’ or ‘module__’ that specifies the

name of the module that defines the predicate or function to which the
procedure belongs.

The name of the type constructor.

An optional suffix of the form ‘/arity’ that specifies the arity of the type
constructor.

An optional suffix of the form ‘-modenum’ that specifies the mode number
of the procedure within the predicate or function to which the procedure
belongs.

For other procedures, the procedure specification has the following components
in the following order:

An optional prefix of the form ‘pred*’ or ‘funcx’ that specifies whether
the procedure belongs to a predicate or a function.

)

An optional prefix of the form ‘module:’, ‘module.’ or ‘module__’ that
specifies the name of the module that defines the predicate or function to
which the procedure belongs.

The name of the predicate or function to which the procedure belongs.

An optional suffix of the form ‘/arity’ that specifies the arity of the pred-
icate or function to which the procedure belongs.

An optional suffix of the form ‘-modenum’ that specifies the mode number
of the procedure within the predicate or function to which the procedure
belongs.
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7.8 User defined events

Besides the builtin set of events, the Mercury debugger also supports events defined by
the user. The intention is that users can define one kind of event for each semantically
important event in the program that is not captured by the standard builtin events, and
can then generate those events at the appropriate point in the source code. Each event
appears in the source code as a call prefixed by the keyword ‘event’, with each argument
of the call giving the value of an event attribute.

Users can specify the set of user defined events that can appear in a program, and the
names, types and order of the attributes of each kind of user defined event, by giving the
name of an event set specification file to the compiler when compiling that program as the
argument of the ‘event-set-file-name’ option. This file should contain a header giving
the event set’s name, followed by a sequence of one or more event specifications, like this:

event set queens

event nodiag_fail(

test_failed: string,

arg_b: int,

arg_d: int,

arg_list_len: int synthesized by list_len_func(sorted_list),
sorted_list: list(int) synthesized by list_sort_func(arg_list),

list_len_func: function,
list_sort_func: function,
arg_list: list(int)

event safe_test(
test_list: listint

event noargs

The header consists of the keywords ‘event set’ and an identifier giving the event set
name. Each event specification consists of the keyword ‘event’, the name of the event, and,
if the event has any attributes, a parenthesized list of those attributes. Each attribute’s
specification consists of a name, a colon and information about the attribute.

There are three kinds of attributes.

e For ordinary attributes, like ‘arg_b’, the information about the attribute is the Mercury
type of that attribute.

e For function attributes, like ‘1ist_sort_func’, the information about the attribute is
just the keyword ‘function’.

e For synthesized attributes, like ‘sorted_list’, the information about the attribute is
the type of the attribute, the keywords ‘synthesized by’, and a description of the
Mercury function call required to synthesize the value of the attribute. The synthesis
call consists of the name of a function attribute and a list of the names of one or more
argument attributes. Argument attributes cannot be function attributes; they may be
either ordinary attributes, or previously synthesized attributes. A synthesized attribute
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is not allowed to depend on itself directly or indirectly, but there are no restrictions
on the positions of synthesized attributes compared to the positions of the function
attributes computing them or of the argument attributes of the synthesis functions.

The result types of function attributes are given by the types of the synthesized attributes
they compute. The argument types of function attributes (and the number of those argu-
ments) are given by the types of the arguments they are applied to. Each function attribute
must be used to compute at least one synthesized attribute, otherwise there would be no
way to compute its type. If it is used to compute more than one synthesized attribute, the
result and argument types must be consistent.

Each event goal in the program must use the name of one of the events defined here as
the predicate name of the call, and the call’s arguments must match the types of that event’s
non-synthesized attributes. Given that B and N are integers and L is a list of integers, these
event goals are fine,

event nodiag fail("N - B", B, N, list.length, list.sort, [N | L]),
event safe_test([1, 2, 3])

but these goals

event nodiag_fail("N - B", B, N, list.sort, list.length, [N | L]),
event nodiag_fail("N - B", B, list.length, N, list.sort, [N | L]),
event safe_test([1], [2])

event safe_test(42)

event nonexistent_event (42)

will all generate errors.

The attributes of event calls are always input, and the event goal is always ‘det’.

7.9 I/0 tabling

In Mercury, predicates that want to do I/O must take a di/uo pair of I/O state arguments.
Some of these predicates call other predicates to do I/O for them, but some are I/0 primi-
tives, i.e. they perform the I/O themselves. The Mercury standard library provides a large
set of these primitives, and programmers can write their own through the foreign language
interface. An I/O action is the execution of one call to an I/O primitive.

In debugging grades, the Mercury implementation has the ability to automatically
record, for every I/O action, the identity of the I/O primitive involved in the action and the
values of all its arguments. The size of the table storing this information is proportional to
the number of tabled 1/O actions, which are the I/O actions whose details are entered into
the table. Therefore the tabling of I/O actions is never turned on automatically; instead,
users must ask for I/O tabling to start with the ‘table_io start’ command in mdb.

The purpose of I/O tabling is to enable transparent retries across I/O actions. (The
mdb ‘retry’ command restores the computation to a state it had earlier, allowing the
programmer to explore code that the program has already executed; see its documentation
in the Section 7.10 [Debugger commands], page 31 section below.) In the absence of I/O
tabling, retries across I/O actions can have bad consequences. Retry of a goal that reads
some input requires that input to be provided twice; retry of a goal that writes some output
generates duplicate output. Retry of a goal that opens a file leads to a file descriptor leak;
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retry of a goal that closes a file can lead to errors (duplicate closes, reads from and writes
to closed files).

I/0O tabling avoids these problems by making I/O primitives idempotent. This means
that they will generate their desired effect when they are first executed, but reexecuting
them after a retry won’t have any further effect. The Mercury implementation achieves
this by looking up the action (which is identified by a I/O action number) in the table and
returning the output arguments stored in the table for the given action without executing
the code of the primitive.

Starting I/O tabling when the program starts execution and leaving it enabled for the
entire program run will work well for program runs that don’t do lots of 1/O. For program
runs that do lots of I/O, the table can fill up all available memory. In such cases, the
programmer may enable I/O tabling with ‘table_io start’ just before the program enters
the part they wish to debug and in which they wish to be able to perform transparent
retries across I/O actions, and turn it off with ‘table_io stop’ after execution leaves that
part.

The commands ‘table_io start’ and ‘table_io stop’ can each be given only once
during an mdb session. They divide the execution of the program into three phases: before
‘table_io start’, between ‘table_io start’ and ‘table_io stop’, and after ‘table_io
stop’. Retries across I/O will be transparent only in the middle phase.

7.10 Debugger commands

When the debugger (as opposed to the program being debugged) is interacting with the
user, the debugger prints a prompt and reads in a line of text, which it will interpret as its
next command line. A command line consists of a single command, or several commands
separated by semicolons. Each command consists of several words separated by white
space. The first word is the name of the command, while any other words give options
and/or parameters to the command.

A word may itself contain semicolons or whitespace if it is enclosed in single quotes
(‘>7). This is useful for commands that have other commands as parameters, for example
‘view -w ’xterm —e’’. Characters that have special meaning to ‘mdb’ will be treated like
ordinary characters if they are escaped with a backslash (‘\’). It is possible to escape single
quotes, whitespace, semicolons, newlines and the escape character itself.

Some commands take a number as their first parameter. For such commands, users can
type ‘number command’ as well as ‘command number’. The debugger will treat the former
as the latter, even if the number and the command are not separated by white space.

7.10.1 Interactive query commands

query modulel module2 ...

cc_query modulel module2 ...

io_query modulel module?2 ...
These commands allow you to type in queries (goals) interactively in the de-
bugger. When you use one of these commands, the debugger will respond with
a query prompt (‘?=’ or ‘run <--’), at which you can type in a goal; the debug-
ger will then compile and execute the goal and display the answer(s). You can
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return from the query prompt to the ‘mdb>’ prompt by typing the end-of-file
indicator (typically control-D or control-Z), or by typing ‘quit.’.

The module names modulel, module2, . .. specify which modules will be im-
ported. Note that you can also add new modules to the list of imports directly
at the query prompt, by using a command of the form ‘[module]’, e.g. ‘[int]’ .
You need to import all the modules that define symbols used in your query.
Queries can only use symbols that are exported from a module; entities which
are declared in a module’s implementation section only cannot be used.

The three variants differ in what kind of goals they allow. For goals which per-
form I/O, you need to use ‘io_query’; this lets you type in the goal using DCG
syntax. For goals which don’t do I/O, but which have determinism ‘cc_nondet’
or ‘cc_multi’, you need to use ‘cc_query’; this finds only one solution to the
specified goal. For all other goals, you can use plain ‘query’, which finds all the
solutions to the goal.

Goals can refer to variables in the current environment, which will be treated
as inputs to the query. Any variables in the goal that do not exist in the
current environment, and that do not start with an underscore, will be treated
as outputs. For ‘query’ and ‘cc_query’, the debugger will print the bindings
of output variables in the goal using ‘io.write_cc’. The goal must bind all of
its output variables to ground terms, otherwise you will get a mode error.

The current implementation works by compiling the queries on-the-fly and then
dynamically linking them into the program being debugged. Thus it may take
a little while for your query to be executed. Each query will be written to
a file named ‘mdb_query.m’ in the current directory, so make sure you don’t
name your source file ‘mdb_query.m’. Note that dynamic linking may not be
supported on some systems; if you are using a system for which dynamic linking
is not supported, you will get an error message when you try to run these
commands.

You may also need to build your program using shared libraries for interactive
queries to work. See Chapter 6 [Libraries], page 11 for details of how to build
with shared libraries.

7.10.2 Forward movement commands

step [-NSans] [num]
Steps forward num events. If this command is given at event cur, continues
execution until event cur + num. The default value of num is 1.
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4 4 4 4

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is not strict, and it uses the default print level.

A command line containing only a number num is interpreted as if it were ‘step

num’.

An empty command line is interpreted as ‘step 1’.

goto [-NSans] num
Continues execution until the program reaches event number num. If the cur-
rent event number is larger than num, it reports an error.

4 3 ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘--all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘--strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

next [-NSans] [num]
Continues execution until it reaches the next event of the num’th ancestor of
the call to which the current event refers. The default value of num is zero,
which means skipping to the next event of the current call. Reports an error if
execution is already at the end of the specified call.

4 4 4 ¢

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘--all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

finish [-NSans]

finish [-NSans] num

finish [-NSans] (‘clentry’|‘clique’)

finish [-NSans] ‘clparent’
If invoked without arguments, continues execution until it reaches a final (EXIT,
FAIL or EXCP) port of the current call. If invoked with the number num
as argument, continues execution until it reaches a final port of the num’th
ancestor of the call to which the current event refers. If invoked with the
argument ‘clentry’ or ‘clique’, continues execution until it reaches a final
port of the call that first entered into the clique of recursive calls of which the
current call is a part. (If the current call is not recursive or mutually recursive
with any other currently active call, it will skip to the end of the current call.)
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If the command is given the argument ‘clparent’, it skips to the end of the
first call outside the current call’s clique. This will be the parent of the call
that ‘finish clentry’ would finish.

If invoked as ‘finish clentry’, ‘finish clique’ or ‘finish clparent’, this
command will report an error unless we have stack trace information about all
of the current call’s ancestors.

Also reports an error if execution is already at the desired port.

4 4 4 4

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

exception [-NSans]
Continues the program until execution reaches an exception event. Reports an
error if the current event is already an exception event.

¢ ¢ ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or

‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.
By default, this command is strict, and it uses the default print level.

return [-NSans]
Continues the program until the program finished returning, i.e. until it reaches
a port other than EXIT. Reports an error if the current event already refers to
such a port.

¢ ¢ ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or

‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.
By default, this command is strict, and it uses the default print level.

user [-NSans]
Continues the program until the next user defined event.

¢ 3 ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.
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forward [-NSans]
Continues the program until the program resumes forward execution, i.e. until
it reaches a port other than REDO or FAIL. Reports an error if the current
event already refers to such a port.

4 3 ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘--strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

mindepth [-NSans] depth
Continues the program until the program reaches an event whose depth is at
least depth. Reports an error if the current event already refers to such a port.

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘--all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

maxdepth [-NSans] depth
Continues the program until the program reaches an event whose depth is at
most depth. Reports an error if the current event already refers to such a port.

4 4 4 ¢

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘--all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘-—strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is strict, and it uses the default print level.

continue [-NSans]
Continues execution until it reaches the end of the program.

¢ 3 ¢ 3

The options ‘-n’ or ‘--none’, ‘-s’ or ‘--some’, ‘-a’ or ‘-—all’ specify the
print level to use for the duration of the command, while the options ‘=S’ or
‘--strict’ and ‘-N’ or ‘--nostrict’ specify the strictness of the command.

By default, this command is not strict. The print level used by the command
by default depends on the final strictness level: if the command is strict, it is
‘none’, otherwise it is ‘some’.
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7.10.3 Backward movement commands

retry [-fio]

retry [-fio] num

retry [-fio] (‘clentry’|‘clique’)

retry [-fio] ‘clparent’
If the command is given no arguments, restarts execution at the call port of the
call corresponding to the current event. If the command is given the number
num as argument, restarts execution at the call port of the call corresponding
to the num’th ancestor of the call to which the current event belongs. For
example, if num is 1, it restarts the parent of the current call. If the command
is given the argument ‘clentry’ or ‘clique’, restarts execution at the call port
of the call that first entered into the clique of recursive calls of which the current
call is a part. (If the current call is not (mutually) recursive with any other
currently active call, the restarted call will be the current call.) If the command
is given the argument ‘clparent’, restarts execution at the call port of the first
call outside the current call’s clique. This will be the parent of the call that
‘retry clentry’ would restart.

If invoked as ‘retry clentry’, ‘retry clique’ or ‘retry clparent’, this com-
mand will report an error unless we have stack trace information about all of
the current call’s ancestors.

The command will also report an error unless the values of all the input argu-
ments of the selected call are available at the return site at which control would
reenter the selected call. (The compiler will keep the values of the input argu-
ments of traced predicates as long as possible, but it cannot keep them beyond
the point where they are destructively updated.) The exception is values of
type ‘io.state’; the debugger can perform a retry if the only missing value is of
type ‘io.state’ (there can be only one io.state at any given time).

Retries over I/O actions are guaranteed to be safe only if the events at which
the retry starts and ends are both within the I/O tabled region of the program’s
execution. If the retry is not guaranteed to be safe, the debugger will normally
ask the user if they really want to do this. The option ‘~f’ or ‘~-force’ sup-
presses the question, telling the debugger that retrying over I/0 is OK; the
option ‘-0’ or ‘--only-if-safe’ suppresses the question, telling the debugger
that retrying over I/0O is not OK; the option ‘-i’ or ‘--interactive’ restores
the question if a previous option suppressed it.

¢

track num [termpath]
Goto the EXIT event of the procedure in which the subterm in argument num
at term path termpath was bound, and display information about where the
term was bound.



Chapter 7: Debugging 37

Note that this command just invokes a script that is equivalent to running the
following sequence of commands:

dd

browse num
cd termpath
track

info

pd

7.10.4 Browsing commands

vars Prints the names of all the known variables in the current environment, together
with an ordinal number for each variable.

held_vars
Prints the names of all the held variables.

print [-fpv] name [termpath]

print [-fpv] num [termpath]
Prints the value of the variable in the current environment with the given name,
or with the given ordinal number. If the name or number is followed by a term
path such as "~2"  then only the specified subterm of the given variable is
printed. This is a non-interactive version of the ‘browse’ command (see below).
Various settings which affect the way that terms are printed out (including e.g.
the maximum term depth) can be set using the ‘format_param’ command.

The options ‘-f’ or ‘--flat’, ‘-p’ or ‘--pretty’, and ‘-v’ or ‘--verbose’ specify
the format to use for printing.

print [-fpv] *
Prints the values of all the known variables in the current environment.

The options ‘-f’ or ‘--flat’, ‘-p’ or ‘-—pretty’, and ‘-v’ or ‘--verbose’ specify
the format to use for printing.

print [-fpv]
print [-fpv] goal
Prints the goal of the current call in its present state of instantiation.

The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for printing.

print [-fpv] exception
Prints the value of the exception at an EXCP port. Reports an error if the
current event does not refer to such a port.
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print
print

print

print

print
print

print
print

The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for printing.

io limits
action limits

Prints the numbers of the lowest and highest numbered I/O actions executed
and recorded by the program, if any.

[-fpv] io num
[-fpv] action num

Prints a representation of the num’th I/O action executed by the program, if
there was such an action and if it was recorded.

The options ‘-f’ or ‘-=flat’, ‘-p’ or ‘--pretty’, and ‘-v’ or ‘--verbose’ specify
the format to use for printing.

[-fpv] io min-max
[-fpv] action min-max

Prints a representation of the I/O actions executed by the program from the
min’th to the min’th, if there were such actions and if they were recorded.

The options ‘-f’ or ‘-=flat’, ‘-p’ or ‘-—pretty’, and ‘-v’ or ‘--verbose’ specify
the format to use for printing.

[-fpv] [-m max] io
[-fpv] [-m max] action

If no I/O actions have been printed yet, or if the last mdb command to print
I/O actions was not successful, prints a representation of the first max 1/0
actions executed and recorded by the program. If there was an mdb command
to print I/O actions and it was successful, prints a representation of the next
max 1/O actions executed and recorded by the program.

The value of max is given by the ‘-m’ option. If the option is not specified, the
default is 20.

The options ‘-f’ or ‘--flat’, ‘-p’ or ‘--pretty’, and ‘-v’ or ‘--verbose’ specify
the format to use for printing.

print [-fpv] [-m max] io *
print [-fpv] [-m max] action *

Prints a representation of the first max I/O actions executed and recorded by
the program.

The value of max is given by the ‘-m’ option. If the option is not specified, the
default is 500.
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The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for printing.

browse [-fpvw] name [termpath]

browse [-fpvw] num [termpath]
Invokes an interactive term browser to browse the value of the variable in the
current environment with the given ordinal number or with the given name. If
the name or number is followed by a term path such as "~2", then only the
specified subterm of the given variable is given to the browser.

The interactive term browser allows you to selectively examine particular sub-
terms. The depth and size of printed terms may be controlled. The displayed
terms may also be clipped to fit within a single screen.

The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for browsing. The ‘-w’ or ‘--web’ option tells mdb to dump
the value of the variable to an HTML file and then invoke a web browser on

that file.

For further documentation on the interactive term browser, invoke the ‘browse’
command from within ‘mdb’ and then type ‘help’ at the ‘browser>’ prompt.

browse [-fpvw]

browse [-fpvw] goal
Invokes the interactive term browser to browse the goal of the current call in
its present state of instantiation.

The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~—-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for browsing. The ‘-w’ or ‘--web’ option tells mdb to dump
the goal to an HTML file and then invoke a web browser on that file.

browse [-fpvw] exception
Invokes the interactive term browser to browse the value of the exception at an
EXCP port. Reports an error if the current event does not refer to such a port.

The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~—pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for browsing. The ‘-w’ or ‘--web’ option tells mdb to dump
the exception to an HTML file and then invoke a web browser on that file.

browse [-fpvw] io num

browse [-fpvw] action num
Invokes an interactive term browser to browse a representation of the num’th
I/0O action executed by the program, if there was such an action and if it was
recorded.
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The options ‘~f’ or ‘--flat’, ‘-p’ or ‘~-pretty’, and ‘~v’ or ‘~-verbose’ specify
the format to use for browsing. The ‘-w’ or ‘--web’ option tells mdb to dump
the I/O action representation to an HTML file, and then invoke a web browser
on that file.

stack [-a] [-d] [-ccliquelines] [-fnumframes] [numlines]
Prints the names of the ancestors of the call specified by the current event. If
two or more consecutive ancestor calls are for the same procedure, the procedure
identification will be printed once with the appropriate multiplicity annotation.

The option ‘-d’ or ‘--detailed’ specifies that for each ancestor call, the call’s
event number, sequence number and depth should also be printed if the call is
to a procedure that is being execution traced.

If the ‘~=f’ option, if present, specifies that only the topmost numframes stack
frames should be printed.

The optional number numlines, if present, specifies that only the topmost num-
lines lines should be printed. The default value is 100; the special value 0 asks
for all the lines to be printed.

By default, this command will look for cliques of mutually recursive ancestors.
It will draw boxes next to them to identify them as such in the output, and
it will print at most 10 lines from any clique. The ‘-c’ option can be used to
specify the maximum number of lines to print for a clique, with the special
value 0 asking for all of them to be printed. The option ‘-a’ asks for all lines
to be printed without cliques being detected or marked.

This command will report an error if there is no stack trace information available
about any ancestor.

up [-d] [num]
Sets the current environment to the stack frame of the num’th level ancestor of
the current environment (the immediate caller is the first-level ancestor).

If num is not specified, the default value is one.

This command will report an error if the current environment doesn’t have the
required number of ancestors, or if there is no execution trace information about
the requested ancestor, or if there is no stack trace information about any of
the ancestors between the current environment and the requested ancestor.

The option ‘-d’ or ‘--detailed’ specifies that for each ancestor call, the call’s
event number, sequence number and depth should also be printed if the call is
to a procedure that is being execution traced.
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down [-d] [num]

level [-d]

Sets the current environment to the stack frame of the num’th level descendant
of the current environment (the procedure called by the current environment is
the first-level descendant).

If num is not specified, the default value is one.

This command will report an error if there is no execution trace information
about the requested descendant.

The option ‘-d’ or ‘--detailed’ specifies that for each ancestor call, the call’s
event number, sequence number and depth should also be printed if the call is
to a procedure that is being execution traced.

level [-d] num
level [-d] (‘clentry’|‘clique’)
level [-d] ‘clparent’

current

If the command is given no arguments, it sets the current environment to the
stack frame that belongs to the current event. If invoked with the number num
as argument, it sets the current environment to the stack frame of the num’th
level ancestor of the call to which the current event belongs. If invoked with the
argument ‘clentry’ or ‘clique’, it sets the current environment to the stack
frame of the call that first entered into the clique of recursive calls of which the
current call is a part. (If the current call is not (mutually) recursive with any
other currently active call, it sets the current environment to the stack frame
of the current event.) If the command is given the argument ‘clparent’, it sets
the current environment to the stack frame of the first call outside the current
call’s clique. This will be the parent of the stack frame that ‘level clentry’
would set the current environment to.

This command will report an error if the current environment doesn’t have the
required number of ancestors, or if there is no execution trace information about
the requested ancestor, or if there is no stack trace information about any of
the ancestors between the current environment and the requested ancestor.

The option ‘-d’ or ‘--detailed’ specifies that for each ancestor call, the call’s
event number, sequence number and depth should also be printed if the call is
to a procedure that is being execution traced.

Prints the current event. This is useful if the details of the event, which were
printed when control arrived at the event, have since scrolled off the screen.
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view [-vf2] [-w window-cmd] [-s server-cmd] [-n server-name] [-t timeout]

view -c [-v] [-s server-cmd] [-n server-name]
Opens a new window displaying the source code, at the location of the current
event. As mdb stops at new events, the window is updated to track through
the source code. This requires X11 and a version of ‘vim’ compiled with the
client/server option enabled.

The debugger only updates one window at a time. If you try to open a new
source window when there is already one open, this command aborts with an
error message.

¢

The variant with ‘=¢’ (or ‘--close’) does not open a new window but instead
attempts to close a currently open source window. The attempt may fail if, for
example, the user has modified the source file without saving.

The option ‘-v’ (or ‘--verbose’) prints the underlying system calls before run-
ning them, and prints any output the calls produced. This is useful to find out
what is wrong if the server does not start.

¢

The option ‘-f’ (or ‘--force’) stops the command from aborting if there is
already a window open. Instead it attempts to close that window first.

The option ‘-2’ (or ‘--split-screen’) starts the vim server with two windows,
which allows both the callee as well as the caller to be displayed at interface
events. The lower window shows what would normally be seen if the split-screen
option was not used, which at interface events is the caller. At these events, the
upper window shows the callee definition. At internal events, the lower window
shows the associated source, and the view in the upper window (which is not
interesting at these events) remains unchanged.

The option ‘-w’ (or ‘--window-command’) specifies the command to open a new
window. The default is ‘xterm -e’.

The option ‘-s’ (or ‘--server-command’) specifies the command to start the

server. The default is ‘vim’.

The option ‘-n’ (or ‘--server-name’) specifies the name of an existing server.
Instead of starting up a new server, mdb will attempt to connect to the existing
one.

The option ‘-t’ (or ‘--timeout’) specifies the maximum number of seconds to
wait for the server to start.
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hold name [termpath] [heldname]

Holds on to the variable name of the current event, or the part of the specified
by termpath, even after execution leaves the current event. The held value will
stay accessible via the name $heldname. If heldname is not specified, it defaults
to name. There must not already be a held variable named heldname.

diff [-s start] [-m max] namel [termpathl] name2 [termpath2]

Prints a list of some of the term paths at which the (specified parts of) the
specified terms differ. Normally this command prints the term paths of the
first 20 differences.

The option ‘-s’ (or ‘--start’), if present, specifies how many of the initial
differences to skip.

The option ‘-m’ (or ‘--max’), if present, specifies how many differences to print.

dump [-pgx] goal filename

Writes the goal of the current call in its present state of instantiation to the
specified file, and outputs a message announcing this fact unless the option ‘-q’
(or ‘--quiet’) was given. The option ‘-p’ (or ‘--prettyprint’) causes the goal
to be output in a pretty-printed form. The option ‘-x’ (or ‘--xml’) causes the
goal to be output in XML format.

dump [-pgx] exception filename

Writes the value of the exception at an EXCP port to the specified file, and
outputs a message announcing this fact unless the option ‘-q’ (or ‘--quiet’)
was given. Reports an error if the current event does not refer to such a port.
The option ‘-p’ (or ‘--prettyprint’) causes the exception value to be output
in a pretty-printed form. The option ‘-x’ (or ‘--xml’) causes the output to be

in XML.

dump [-pqgx] name filename
dump [-pgx] num filename

open term

Writes the value of the variable in the current environment with the given
ordinal number or with the given name to the specified file, and outputs a
message announcing this fact unless the option ‘-q’ (or ‘--quiet’) was given.
The option ‘-p’ (or ‘--prettyprint’) causes the variable’s value to be output
in a pretty-printed form. The option ‘-x’ (or ‘--xml’) causes the output to be

in XML.

4

Save term to a temporary file and open the file in an editor. The name of the
editor to be used is taken from the environment variable EDITOR if this is set;
if it is not set, then the editor will be ‘vi’. term may be any term that can be
saved to a file with the ‘save_to_file’ command.
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grep pattern term
Saves the given term to a temporary file and invokes grep on the file using pat-
tern. term may be any term that can be saved to a file with the ‘save_to_file’
command. The Unix ‘grep’ command must be available from the shell for this
command to work.

list [num]
Lists the source code text for the current environment, including num preceding
and following lines. If num is not provided then the default of two is used.

7.10.5 Breakpoint commands

break [-PS] [-Eignore-count] [-Iignore-count] [-n] [-pprint-spec]*

filename :linenumber
Puts a break point on the specified line of the specified source file, if there is
an event or a call at that position. If the filename is omitted, it defaults to the
filename from the context of the current event.

4 )

The options ‘=P’ or ‘--print’, and ‘=S’ or ‘--stop’ specify the action to be

taken at the break point.

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the breakpoint. The options ‘-Iignore-count’ and
‘-—ignore-interface ignore-count’ tell the debugger to ignore the break-
point until after ignore-count occurrences of interface events that match the
breakpoint.

Each occurrence of the options ‘-pprintspec’ and ‘--print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘--no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, the ignore count is zero, and
the print list is empty.
break [-AOPSaei] [-Eignore-count] [-Iignore-count] [-n] [-pprint-spec]*
proc-spec
Puts a break point on the specified procedure.
The options ‘-A’ or ‘--select-all’, and ‘-0’ or ‘--select-one’ select the
action to be taken if the specification matches more than one procedure. If
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you have specified option ‘=A’ or ‘--select-all’, mdb will put a breakpoint

on all matched procedures, whereas if you have specified option ‘-0’ or
‘--select-one’, mdb will report an error. By default, mdb will ask you
whether you want to put a breakpoint on all matched procedures or just one,
and if so, which one.

¢ Y

The options ‘-P’ or ‘--print’, and ‘-S
taken at the break point.

or ‘--stop’ specify the action to be

The options ‘-a’ or ‘--all’, ‘-e’ or ‘-—entry’, and ‘-i’ or ‘--interface’ spec-
ify the invocation conditions of the break point. If none of these options are
specified, the default is the one indicated by the current scope (see the ‘scope’
command below). The initial scope is ‘interface’.

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the breakpoint. The options ‘~Iignore-count’ and
‘-—ignore-interface ignore-count’ tell the debugger to ignore the break-
point until after ignore-count occurrences of interface events that match the
breakpoint.

Each occurrence of the options ‘~pprintspec’ and ‘~-print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘-—no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, its invocation condition is
‘interface’, the ignore count is zero, and the print list is empty.

break [-0PS] [-Eignore-count] [-Iignore-count] [-n] [-pprint-spec]*
proc-spec portname
Puts a break point on one or more events of the specified type in the specified
procedure. Port names should be specified as they are printed at events, e.g.
‘CALL’, ‘EXIT’, ‘DISJ’, ‘SWTC’, etc.

The option ‘-0’ or ‘--select-one’ selects the action to be taken if the specifi-
cation matches more than one procedure. If you have specified option ‘-0’ or
‘~-select-one’, mdb will report an error; otherwise, mdb will ask you which
of the matched procedures you want to select.
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If there is only one event of the given type in the specified procedure, mdb will
put the breakpoint on it; otherwise, it will ask you whether you want to put a
breakpoint on all matched events or just one, and if so, which one.

¢ Y ¢

The options ‘=P’ or ‘--print’, and ‘=S’ or ‘--stop’ specify the action to be
taken at the break point.

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the breakpoint. The options ‘-Iignore-count’ and
‘-—ignore-interface ignore-count’ tell the debugger to ignore the break-
point until after ignore-count occurrences of interface events that match the
breakpoint.

Each occurrence of the options ‘~pprintspec’ and ‘~-print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘--no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, the ignore count is zero, and
the print list is empty.

break [-PS] [-Eignore-count] [-Iignore-count] [-n] [-pprint-spec]* here
Puts a break point on the procedure referred to by the current event, with the
invocation condition being the event at the current location in the procedure
body.

¢ Y ¢

The options ‘-P’ or ‘--print’, and ‘-8’ or ‘--stop’ specify the action to be
taken at the break point.

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the breakpoint. The options ‘-Iignore-count’ and
‘-—ignore-interface ignore-count’ tell the debugger to ignore the break-
point until after ignore-count occurrences of interface events that match the
breakpoint.

Each occurrence of the options ‘-pprintspec’ and ‘--print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.
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Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘-—no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, the ignore count is zero, and
the print list is empty.

break [-PS] [-Xignore-count] [-n] [-pprint-spec]* user_event

[user-event-set] user-event-name
Puts a break point on all user events named user-event-name, or, if user-event-
set is specified as well, on the user event named user-event-name in that event
set.

)

The options ‘=P’ or ‘--print’, and ‘=S’ or ‘--stop’ specify the action to be

taken at the break point.

The options ‘~Xignore-count’ and ‘--ignore ignore-count’ tell the debugger
to ignore the breakpoint until after ignore-count occurrences of an event that
matches the breakpoint.

Each occurrence of the options ‘~pprintspec’ and ‘~-print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘--no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, the ignore count is zero, and
the print list is empty.

break [-PS] [-Xignore-count] [-n] [-pprint-spec]* user_event_set
[user-event-set]
Puts a break point either on all user events in all event sets, or, if user-event-set
is specified, on all user events in the event set of the given name.

4 Y ¢

The options ‘=P’ or ‘--print’, and ‘=S’ or ‘--stop’ specify the action to be
taken at the break point.

The options ‘~Xignore-count’ and ‘--ignore ignore-count’ tell the debugger
to ignore the breakpoint until after ignore-count occurrences of an event that
matches the breakpoint.
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break info

condition

Each occurrence of the options ‘~-pprintspec’ and ‘~-print-list printspec’
tells the debugger to include the specified entity in the breakpoint’s print list.

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘-—no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

By default, the action of the break point is ‘stop’, the ignore count is zero, and
the print list is empty.

Lists the details, status and print lists of all break points.

[-bbreak-num] [-p] [-v] varname [pathspec] op term

Attaches a condition to the most recent breakpoint, or, if the ‘-b’ or
‘~-break-num’ is given, to the breakpoint whose number is given as the
argument. Execution won’t stop at the breakpoint if the condition is false.

The condition is a match between a variable live at the breakpoint, or a part
thereof, and term. It is ok for term to contain spaces. The term from the
program to be matched is specified by varname; if it is followed by pathspec
(without a space), it specifies that the match is to be against the specified part
of varname.

There are two kinds of values allowed for op. If op is ‘=" or ‘==, the condition is
true if the term specified by varname (and pathspec, if present) matches term.
If op is ‘=" or ‘\=", the condition is true if the term specified by varname (and
pathspec, if present) doesn’t match term. term may contain integers and strings
(as long as the strings don’t contain double quotes), but floats and characters are
not supported (yet), and neither is any special syntax for operators. Operators
can be specified in prefix form by quoting them with escaped single quotes,
as in ‘\’+\’ (1, 2)’. Lists can be specified using the usual syntax. term also
may not contain variables, with one exception: any occurrence of ‘_’ in term
matches any term.

If execution reaches a breakpoint and the condition cannot be evaluated, ex-
ecution will normally stop at that breakpoint with a message to that effect.
If the ‘-p’ or ‘--dont-require-path’ option is given, execution won’t stop at
breakpoints at which the specified part of the specified variable doesn’t exist.
If the ‘v’ or ‘--dont-require-var’ option is given, execution won’t stop at
breakpoints at which the specified variable itself doesn’t exist. The ‘-=v’ or
‘-—dont-require-var’ option is implicitly assumed if the specified breakpoint
is on all user events.
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ignore [-Eignore-count] [-Iignore-count] num

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the breakpoint with the specified number. The options
‘~-Tignore-count’ and ‘--ignore-interface ignore-count’ tell the debugger
to ignore the breakpoint until after ignore-count occurrences of interface events
that match the breakpoint with the specified number. If neither option is given,
the default is to ignore one call event that matches the breakpoint with the
specified number. Reports an error if there is no break point with the specified
number.

ignore [-Eignore-count] [-Iignore-count]

The options ‘-Eignore-count’ and ‘--ignore-entry ignore-count’ tell the
debugger to ignore the breakpoint until after ignore-count occurrences of a
call event that matches the most recently added breakpoint. The options
‘~-Tignore-count’ and ‘--ignore-interface ignore-count’ tell the debug-
ger to ignore the breakpoint until after ignore-count occurrences of interface
events that match the most recently added breakpoint. If neither option is
given, the default is to ignore one call event that matches the most recently
added breakpoint. Reports an error if the most recently added breakpoint has
since been deleted.

break_print [-fpv] [-e] [-n] [-b num] print-specx*
Adds the specified print list elements (there may be more than one) to the
print list of the breakpoint numbered num (if the ‘-b’ or ‘~-break-num’ option
is given), or to the print list of the most recent breakpoint (if it is not given).

Normally, if a variable with the given name or number doesn’t exist when
execution reaches the breakpoint, mdb will issue a warning. The option ‘-n’ or
‘--no-warn’, if present, suppresses this warning. This can be useful if e.g. the
name is the name of an output variable, which of course won’t be present at
call events.

Normally, the specified elements will be added at the start of the breakpoint’s
print list. The option ‘-e’ or ‘-—end’, if present, causes them to be added at
the end.

By default, the specified elements will be printed with format "flat". The
options ‘-f’ or ‘--flat’, ‘-p’ or ‘--pretty’, and ‘-v’ or ‘--verbose’, if given,
explicitly specify the format to use.

¢ ¢

break_print [-b num] none
Clears the print list of the breakpoint numbered num (if the ‘-b’ or
‘~—break-num’ option is given), or the print list of the most recent breakpoint
(if it is not given).
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disable num

disable *

disable

enable num

enable *

enable

delete num

delete *

delete

modules

Disables the break point with the given number. Reports an error if there is no
break point with that number.

Disables all break points.

Disables the most recently added breakpoint. Reports an error if the most
recently added breakpoint has since been deleted.

Enables the break point with the given number. Reports an error if there is no
break point with that number.

Enables all break points.

Enables the most recently added breakpoint. Reports an error if the most
recently added breakpoint has since been deleted.

Deletes the break point with the given number. Reports an error if there is no
break point with that number.

Deletes all break points.

Deletes the most recently added breakpoint. Reports an error if the most
recently added breakpoint has already been deleted.

Lists all the debuggable modules (i.e. modules that have debugging informa-
tion).

procedures module

Lists all the procedures in the debuggable module module.

register [-q]

Registers all debuggable modules with the debugger. Has no effect if this reg-
istration has already been done. The debugger will perform this registration
when creating breakpoints and when listing debuggable modules and/or pro-
cedures. The command will print a message to this effect unless the ‘-q’ or
‘-—quiet’ option is given.

7.10.6 I/0 tabling commands

table_io

Reports which phase of I/O tabling we are in at the moment.
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table_io start
Tells the debugger to start tabling 1/O actions.

table_io stop
Tells the debugger to stop tabling I/O actions.

table_io stats
Reports statistics about I/0O tabling.

7.10.7 Parameter commands

mmc_options optionl option2 ...
This command sets the options that will be passed to ‘mmc’ to compile your
query when you use one of the query commands: ‘query’, ‘cc_query’, or
‘io_query’. For example, if a query results in a compile error, it may sometimes
be helpful to use ‘mmc_options --verbose-error-messages’.

printlevel none
Sets the default print level to ‘none’.

printlevel some
Sets the default print level to ‘some’.

printlevel all
Sets the default print level to ‘all’.

printlevel
Reports the current default print level.

scroll on Turns on user control over the scrolling of sequences of event reports. This
means that every screenful of event reports will be followed by a °
prompt. You may type an empty line, which allows the debugger to continue
to print the next screenful of event reports. By typing a line that starts with
‘a’, ‘s’ or ‘n’, you can override the print level of the current command, setting
it to ‘all’, ‘some’ or ‘none’ respectively. By typing a line that starts with ‘q’,
you can abort the current debugger command and get back control at the next
event.

--more——’

scroll off
Turns off user control over the scrolling of sequences of event reports.

scroll size
Sets the scroll window size to size, which tells scroll control to stop and print
a ‘--more--’ prompt after every size — 1 events. The default value of size is
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the value of the LINES environment variable, which should correspond to the
number of lines available on the terminal.

scroll Reports whether user scroll control is enabled and what the window size is.

stack_default_limit size
Set the default number of lines printed by the ‘stack’ and ‘nondet_stack’
commands to size. If size is zero, the limit is disabled.

goal_paths on
Turns on printing of goal paths at events.

goal_paths off
Turns off printing of goal paths at events.

goal_paths
Reports whether goal paths are printed at events.

scope all Sets the default scope of new breakpoints to “all”, i.e. by default, new break-
points on procedures will stop at all events in the procedure.

scope interface
Sets the default scope of new breakpoints to “interface”, i.e. by default, new
breakpoints on procedures will stop at all interface events in the procedure.

scope entry
Sets the default scope of new breakpoints to “entry”, i.e. by default, new break-
points on procedures will stop only at events representing calls to the procedure.

scope Reports the current default scope of new breakpoints.
echo on Turns on the echoing of commands.

echo off Turns off the echoing of commands.

echo Reports whether commands are being echoed or not.

context none
When reporting events or ancestor levels, does not print contexts (filename/line
number pairs).

context before
When reporting events or ancestor levels, prints contexts (filename /line number
pairs) before the identification of the event or call to which they refer, on the
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same line. With long fully qualified predicate and function names, this may
make the line wrap around.

context after
When reporting events or ancestor levels, prints contexts (filename/line number
pairs) after the identification of the event or call to which they refer, on the
same line. With long fully qualified predicate and function names, this may
make the line wrap around.

context prevline
When reporting events or ancestor levels, prints contexts (filename /line number
pairs) on a separate line before the identification of the event or call to which
they refer.

context nextline
When reporting events or ancestor levels, prints contexts (filename/line number
pairs) on a separate line after the identification of the event or call to which
they refer.

context  Reports where contexts are being printed.

user_event_context none
When reporting user-defined events, does not print either filename/line number
pairs or procedure ids.

user_event_context file
When reporting user-defined events, prints only filename/line number pairs, not
procedure ids.

user_event_context proc
When reporting user-defined events, prints only procedure ids, not filename/line
number pairs.

user_event_context full
When reporting user-defined events, prints both filename/line number pairs and
procedure ids.

user_event_context
Reports what parts of the context are being printed at user events.

list_context_lines num
Sets the number of lines to be printed by the ‘list’ command printed before
and after the target context.
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list_context_lines
Prints the number of lines to be printed by the ‘list’ command printed before
and after the target context.

list_path dirl dir2 ...
The ‘list’ command searches a list of directories when looking for a source
code file. The ‘list_path’ command sets the search path to the given list of
directories.

list_path
When invoked without arguments, the ‘1ist_path’ command prints the search
path consulted by the ‘1ist’ command.

push_list_dir dirl dir2 ...
Pushes the given directories on to the search path consulted by the ‘list’
command.

pop_list_dir
Pops the leftmost (most recently pushed) directory from the search path con-
sulted by the ‘list’ command.

list_cmd ExternalCommand
Tells mdb that all future ‘1ist’ commands should be handled by ExternalCom-
mand. The command will be called with four arguments: the source file name,
the first line number (counting from 1), the last line number, the current line
number. The command should print all the lines from the first to the last,
both inclusive, with the current line marked (or highlighted) in some fashion to
standard output, and report any errors to standard error.

If ExternalCommand is ‘none’ then the ‘list’ command will revert to printing
source listings internally.

list_cmd When invoked without arguments, the ‘list_cmd’ command prints the last
value set by the ‘list_cmd’ command.

fail_trace_counts filename
The declarative debugger can exploit information about the failing and passing
test cases to ask better questions. This command tells the ‘dice’ command that
filename contains execution trace counts from failing test cases. The ‘dice’ com-
mand will use this file unless this is overridden with its ‘~-fail-trace-counts’
option.

fail_trace_counts
Prints the name of the file containing execution trace counts from failing test
cases, if this has already been set.
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pass_trace_counts filename
The declarative debugger can exploit information about the failing and
passing test cases to ask better questions. This command tells the ‘dice’
command that filename contains execution trace counts from passing test
cases. The ‘dice’ command will use this file unless this is overridden with its
‘--pass-trace-counts’ option.

pass_trace_counts
Prints the name of the file containing execution trace counts from passing test
cases, if this has already been set.

max_io_actions num
Set the maximum number of I/O actions to print in questions from the declar-
ative debugger to num.

max_io_actions
Prints the maximum number of I/O actions to print in questions from the
declarative debugger.

web_browser_cmd command
Set the shell command used to launch a web browser to command.

web_browser_cmd
Prints the shell command used to launch a web browser, if this has been set.

format [-APB] format
Sets the default format of the browser to format, which should be one of ‘flat’,
‘pretty’ or ‘verbose’.

The browser maintains separate configuration parameters for the three com-
mands ‘print *’, ‘print var’, and ‘browse var’. A ‘format’ command applies
to all three, unless it specifies one or more of the options ‘-A’ or ‘--print-all’,
‘~P’ or ‘--print’, and ‘-B’ or ‘--browse’, in which case it will set only the
selected command’s default format.

¢

format_param [-APBfpv] param value
Sets one of the parameters of the browser to the given value. The parameter
param must be one of ‘depth’, ‘size’, ‘width’ and ‘lines’.

e ‘depth’ is the maximum depth to which subterms will be displayed. Sub-
terms at the depth limit may be abbreviated as functor/arity, or (in lists)
may be replaced by an ellipsis (‘. ..’). The principal functor of any term
has depth zero. For subterms which are not lists, the depth of any ar-
gument of the functor is one greater than the depth of the functor. For
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subterms which are lists, the depth of each element of the list is one greater
than the depth of the list.

e ‘size’ is the suggested maximum number of functors to display. Beyond
this limit, subterms may be abbreviated as functor/arity, or (in lists) may
be replaced by an ellipsis (‘..."). For the purposes of this parameter, the
size of a list is one greater than the sum of the sizes of the elements in the
list.

e ‘width’ is the width of the screen in characters.

e ‘lines’ is the preferred maximum number of lines of one term to display.

The browser maintains separate configuration parameters for the three com-
mands ‘print *’, ‘print var’, and ‘browse var’. A ‘format_param’ com-
mand applies to all three, unless it specifies one or more of the options ‘-A’
or ‘--print-all’, ‘-P’ or ‘--print’, and ‘-B’ or ‘--browse’, in which case it
will set only the selected command’s parameters.

The browser also maintains separate configuration parameters for the different
output formats: flat, pretty and verbose. A ‘format_param’ command applies
to all of these, unless it specifies one or more of the options ‘-f’ or ‘--flat’,
‘-p’ or ‘--pretty’, and ‘-v’ or ‘--verbose’, in which case it will set only the
selected format’s parameter.

3

alias name command [command-parameter ...]
Introduces name as an alias for the given command with the given parameters.
Whenever a command line has name as its first word, the debugger will sub-
stitute the given command and parameters for this word before executing the
command line.

If name is the upper-case word ‘EMPTY’, the debugger will substitute the given
command and parameters whenever the user types in an empty command line.

If name is the upper-case word ‘NUMBER’, the debugger will insert the given
command and parameters before the command line whenever the user types in
a command line that consists of a single number.

unalias name
Removes any existing alias for name.
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7.10.8 Help commands

document_category slot category
Create a new category of help items, named category. The summary text
for the category is given by the lines following this command, up to but not
including a line containing only the lower-case word ‘end’. The list of category
summaries printed in response to the command ‘help’ is ordered on the integer
slot numbers of the categories involved.

document category slot item
Create a new help item named item in the help category category. The text
for the help item is given by the lines following this command, up to but not
including a line containing only the lower-case word ‘end’. The list of items
printed in response to the command ‘help category’ is ordered on the integer
slot numbers of the items involved.

help category item
Prints help text about the item item in category category.

help word
Prints help text about word, which may be the name of a help category or a
help item.

help Prints summary information about all the available help categories.

7.10.9 Declarative debugging mdb commands

The following commands relate to the declarative debugger. See Section 7.11 [Declarative
debugging], page 67 for details.

dd [-r] [-R] [-nnodes] [-ssearch-mode] [-ppassfile] [-ffailfilel]
Starts declarative debugging using the current event as the initial symptom.

When searching for bugs the declarative debugger needs to keep portions of
the execution trace in memory. If it requires a new portion of the trace then it
needs to rerun the program. The ‘-nnodes’ or ‘--nodes nodes’ option tells the
declarative debugger how much of the execution trace to gather when it reruns
the program. A higher value for nodes requires more memory, but improves
the performance of the declarative debugger for long running programs since it
will not have to rerun the program as often.

The ‘-ssearch-mode’ or ‘--search-mode search-mode’ option tells the declar-
ative debugger which search mode to use. Valid search modes are ‘top_down’
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(or ‘td’), ‘divide_and_query’ (or ‘dq’) and ‘suspicion_divide_and_query’
(or ‘sdq’). ‘top_down’ is the default when this option is not given.

Use the ‘-r’ or ‘--resume’ option to continue your previous declarative de-
bugging session. If the ‘--resume’ option is given and there were no previous
declarative debugging sessions then the option will be ignored. A ‘dd --resume’
command can be issued at any event. The ‘~-search-mode’ option may be used
with the ‘--resume’ option to change the search mode of a previously started
declarative debugging session.

Use the ‘-R’ or ‘--reset-knowledge-base’ option to reset the declarative de-
bugger’s knowledge base. The declarative debugger will forget any previous
answers that have been supplied. It will ask previous questions again if it needs
to. This option does not affect what predicates or modules are trusted.

The arguments supplied to the ‘--pass-trace-counts’ (or ‘-p’) and

‘~—fail-trace-counts’ (or ‘-f’) options are either trace count files or files
containing a list of trace count files. The supplied trace counts are used
to assign a suspicion to each event based on which parts of program were
executed in the failing test case(s), but not the passing test case(s). This is
used to guide the declarative debugger when the suspicion-divide-and-query
search mode is used. If the suspicion-divide-and-query search mode is
specified then either both the ‘-p’ and ‘-f’ options must be given, or the
‘fail_trace_counts’ and ‘pass_trace_counts’ configuration parameters
must be set (using the ‘set’ command).

trust module-name | proc-spec

trusted

Tells the declarative debugger to trust the given module, predicate or function.

Individual predicates or functions can be trusted by just giving the predicate or
function name. If there is more than one predicate or function with the given
name then a list of alternatives will be shown.

The entire Mercury standard library is trusted by default and can be untrusted
in the usual manner using the ‘untrust’ command. To restore trusted status
to the Mercury standard library issue the command ‘trust standard library’ or
just ‘trust std lib’.

See also ‘trusted’ and ‘untrust’.

Lists all the trusted modules, predicates and functions. See also ‘trust’ and
‘untrust’.
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untrust num
Removes the object from the list of trusted objects. num should correspond
with the number shown in the list produced by issuing a ‘trusted’ command.
See also ‘trust’ and ‘trusted’.

7.10.10 Miscellaneous commands

source [-i] filename [args]
Executes the commands in the file named filename. Optionally a list of at most
nine arguments can be given. Occurrences of the strings "$1" to "$9" in the
sourced file will be replaced by the corresponding arguments given in the source
command before the commands in the sourced file are executed.

Lines that start with a hash (#) character are ignored. Hash characters can be
used to place comments in your mdb scripts.

The option ‘=i’ or ‘--ignore-errors’ tells ‘mdb’ not to complain if the named
file does not exist or is not readable.

save filename

Saves the persistent state of the debugger (aliases, print level, scroll controls,
set of breakpoints, browser parameters, set of objects trusted by the declarative
debugger, etc) to the specified file. The state is saved in the form of mdb
commands, so that sourcing the file will recreate the saved state. Note that
this command does not save transient state, such as the current event. There is
also a small part of the persistent state (breakpoints established with a ‘break
here’ command) that cannot be saved.

quit [-y] Quits the debugger and aborts the execution of the program. If the option
‘~y’ is not present, asks for confirmation first. Any answer starting with ‘y’, or
end-of-file, is considered confirmation.

End-of-file on the debugger’s input is considered a quit command.
7.10.11 Experimental commands

histogram_all filename
Prints (to file filename) a histogram that counts all events at various depths
since the start of the program. This histogram is available only in some exper-
imental versions of the Mercury runtime system.

histogram_exp filename
Prints (to file filename) a histogram that counts all events at various depths
since the start of the program or since the histogram was last cleared. This his-
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togram is available only in some experimental versions of the Mercury runtime
system.

clear_histogram

Clears the histogram printed by ‘histogram_exp’, i.e. sets the counts for all
depths to zero.

dice [-pfilename] [-ffilename] [-nnum] [-s[pPfFsS]+] [-o filename] [-m

module]

Display a program dice on the screen.

A dice is a comparison between some successful test runs of the program and a
failing test run. Before using the ‘dice’ command one or more passing execution
summaries and one failing execution summary need to be generated. This can
be done by compiling the program with deep tracing enabled (either by com-
piling in a .debug or .decldebug grade or with the ‘--trace deep’ or ‘~—trace
rep’ compiler options) and then running the program under ‘mtc’. This will
generate a file with the prefix ‘.mercury_trace_counts’ and a unique suffix,
that contains a summary of the program’s execution This summary is called a
slice. Copy the generated slice to a new file for each test case, to end up with a
failing slice, say ‘fail’, and some passing slices, say ‘passl’, ‘pass2’, ‘pass3’,
etc. Union the passing slices with a command such as ‘mtc_union -p passes
passl pass2 pass3’.

The ‘dice’ command can use these files to display a table of statistics comparing
the passing test runs to the failing run. Here is an example of a dice displayed
in an mdb session:

mdb> dice -f fail -p passes -s S -n 4

Procedure Path/Port File:Line Pass (3) Fail Suspicion
pred s.mrg/3-0 <s2;c2;e;> s.m:74 0 (0) 1 1.00
pred s.mrg/3-0 <s2;c2;t;> s.m:67 10 (3) 4 0.29
pred s.mrg/3-0  CALL S.m:64 18 (3) 7 0.28
pred s.mrg/3-0  EXIT s.m:64 18 (3) 7 0.28

This example tells us that the ‘else’ in ‘s.m’ on line 74 was executed once in
the failing test run, but never in the passing test runs, so this would be a good
place to start looking for a bug.

Each row in the table contains statistics about the execution of a separate goal
in the program. Six columns are displayed:

e ‘Procedure’: The procedure in which the goal appears.

e ‘Path/Port’: The goal path and/or port of the goal. For atomic goals,
statistics about the CALL event and the corresponding EXIT, FAIL or
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EXCP event are displayed on separate rows. For other types of goals the
goal path is displayed, except for NEGE, NEGS and NEGF events where
the goal path and port are displayed.

e ‘File:Line’: The file name and line number of the goal. This can be used
to set a breakpoint on the goal.

e ‘Pass (total passing test runs)’: The total number of times the goal
was executed in all the passing test runs. This is followed by a number in
parentheses which indicates the number of test runs the goal was executed
in. The heading of this column also has a number in parentheses which is
the total number of passing test cases. In the example above we can see
that 3 passing tests were run.

e ‘Fail’: The number of times the goal was executed in the failing test run.

e ‘Suspicion’ A number between 0 and 1 which gives an indication of how
likely a particular goal is to be buggy. The is calculated as Suspicion = F /
(P + F) where F is the number of times the goal was executed in the failing
test run and P is the number of times the goal was executed in passing test
runs.

The name of the file containing the failing slice can be specified with the ‘-f’
or ‘--fail-trace-counts’ option or with a separate ‘set fail_trace_count

filename’ command.

The name of the file containing the union of the passing slices can be given
with the ‘-p’ or ‘~-pass-trace-counts’ option. Alternatively a separate ‘set
pass_trace_counts filename’ command can be given. See Section 7.12 [Trace
counts|, page 76 for more information about trace counts.

The table can be sorted on the Pass, Fail or Suspicion columns, or a combination
of these. This can be done with the ‘-s’ or ‘--sort’ option. The argument of
this option is a string made up of any combination of the letters ‘pPfFsS’. The
letters in the string indicate how the table should be sorted:

e ‘p’: Pass ascending

e ‘P’: Pass descending

e ‘f’: Fail ascending

e ‘F’: Fail descending

e ‘s’: Suspicion ascending

e ‘S’: Suspicion descending

For example, the string "SF" means sort the table by suspicion, descending,
and if any two suspicions are the same, then by number of executions in the
failing test case, descending.
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The option ‘-n’ or ‘~=top’ can be used to limit the number lines displayed. Only
the top num lines, with respect to the ordering specified by the ‘-s’ option, will
be displayed. By default the table is limited to 50 lines.

If the ‘-0’ or ‘~—output-to-file’ option is given then the output will be written
to the specified file instead of being displayed on the screen. Note that the file
will be overwritten without warning if it already exists.

The ‘-m’ or ‘--module’ option limits the output to the given module and its
submodules, if any.

7.10.12 Developer commands

The following commands are intended for use by the developers of the Mercury implemen-

tation.

var_details

flag

Prints all the information the debugger has about all the variables at the current
program point.

Prints the values of all the runtime low-level debugging flags.

flag flagname

Prints the value of the specified runtime low-level debugging flag.

flag flagname on

Sets the specified runtime low-level debugging flag to true.

flag flagname off

subgoal n

consumer n

gen_stack

Sets the specified runtime low-level debugging flag to false.

In minimal model grades, prints the details of the specified subgoal. In other
grades, it reports an error.

In minimal model grades, prints the details of the specified consumer. In other
grades, it reports an error.

In minimal model grades, prints the contents of the frames on the generator
stack. In other grades, it reports an error.
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cut_stack
In minimal model grades, prints the contents of the frames on the cut stack. In
other grades, it reports an error.

pneg_stack
In minimal model grades, prints the contents of the frames on the possible
negated context stack. In other grades, it reports an error.

mm_stacks
In minimal model grades, prints the contents of the frames on the generator
stack, the cut stack and the possible negated context stack. In other grades, it
reports an error.

nondet_stack [-d] [-fnumframes] [numlines]
Prints the contents of the frames on the nondet stack. By default, it prints
only the fixed slots in each nondet stack frame, but if the ‘-d’ or ‘~-detailed’
option is given, it will also print the names and values of the live variables in
them.

The ‘-f’ option, if present, specifies that only the topmost numframes stack
frames should be printed.

The optional number numlines, if present, specifies that only the topmost num-
lines lines should be printed.

stack_regs
Prints the contents of the virtual machine registers that point to the det and
nondet stacks.

all_regs Prints the contents of all the virtual machine registers.

debug_vars
Prints the values of the variables used by the debugger to record event numbers,
call sequence numbers and call depths.

stats [-f filename] subject
Prints statistics about the given subject to standard output, unless the ‘-’ or
‘-—filename’ option is given, in which case it prints the statistic to filename.

subject can be ‘procs’, which asks for statistics about proc layout structures
in the program.

subject can be ‘labels’, which asks for statistics about label layout structures
in the program.
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subject can be ‘var_names’, which asks for statistics about the space occupied
by variable names in the layout structures in the program.

subject can be ‘io_tabling’, which asks for statistics about the number of
times each predicate appears in the I/O action table.

print_optionals
Reports whether optionally-printed values such as typeinfos that are usually of
interest only to implementors are being printed or not.

print_optionals on
Tells the debugger to print optionally-printed values.

print_optionals off
Tells the debugger not to print optionally-printed values.

unhide_events
Reports whether events that are normally hidden (that are usually of interest
only to implementors) are being exposed or not.

unhide_events on
Tells the debugger to expose events that are normally hidden.

unhide_events off
Tells the debugger to hide events that are normally hidden.

table proc [numl ...]
Tells the debugger to print the call table of the named procedure, together with
the saved answer (if any) for each call. Reports an error if the named procedure
isn’t tabled.

For now, this command is supported only for procedures whose arguments are
all either integers, floats or strings.

If the user specifies one or more integers on the command line, the output is
restricted to the entries in the call table in which the nth argument is equal to
the nth number on the command line.

type_ctor [-fr] modulename typectorname arity
Tests whether there is a type constructor defined in the given module, with the
given name, and with the given arity. If there isn’t, it prints a message to that
effect. If there is, it echoes the identity of the type constructor.
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If the option ‘-r’ or ‘~-print-rep’ option is given, it also prints the name

of the type representation scheme used by the type constructor (known as its
‘type_ctor_rep’ in the implementation).

If the option ‘-f’ or ‘--print-functors’ option is given, it also prints the

names and arities of function symbols defined by type constructor.

all_type_ctors [-fr] [modulename]
If the user specifies a module name, lists all the type constructors defined in
the given module. If the user doesn’t specify a module name, lists all the type
constructors defined in the whole program.

¢

If the option ‘-r’ or ‘--print-rep’ option is given, it also prints the name
of the type representation scheme of each type constructor (known as its
‘type_ctor_rep’ in the implementation).

If the option ‘-f’ or ‘--print-functors’ option is given, it also prints the

names and arities of function symbols defined by each type constructor.

class_decl [-im] modulename typeclassname arity
Tests whether there is a type class defined in the given module, with the given
name, and with the given arity. If there isn’t, it prints a message to that effect.
If there is, it echoes the identity of the type class.

4 3

If the option ‘“-m’ or ‘--print-methods’ option is given, it also lists all the
methods of the type class.

¢ ¢

If the option ‘-i’ or ‘--print-instance’ option is given, it also lists all the
instances of the type class.

all_class_decls [-im] [modulename]
If the user specifies a module name, lists all the type classes defined in the given
module. If the user doesn’t specify a module name, lists all the type classes
defined in the whole program.

¢ ¢

If the option ‘-m’ or ‘--print-methods’ option is given, it also lists all the
methods of each type class.

¢

If the option ‘-i’ or ‘~-print-instance’ option is given, it also lists all the
instances of each type class.

all_procedures [-sul [-m modulename] filename
In the absence of the ‘-m’ or ‘--module’ option, puts a list of all the debuggable
procedures in the program into the named file. In the presence of the ‘-m’ or
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ambiguity

‘--module’ option, puts a list of all the debuggable procedures in the names
module into the named file.

If the ‘-s’ or ‘~-separate’ option is given, the various components of procedure
names are separated by spaces.

If the ‘-u’ or ‘-=-uci’ option is given, the list will include the procedures of com-
piler generated unify, compare, index and initialization predicates. Normally,
the list includes the procedures of only user defined predicates.

[-o filename] [-ptfbs] [modulename ...]

Print ambiguous procedure, type constructor and/or function symbol names.
A procedure name is ambiguous if a predicate or function is defined with that
name in more than one module or with more than one arity. A type constructor
name is ambiguous if a type constructor is defined with that name in more than
one module or with more than one arity. A function symbol name is ambiguous
if a function symbol is defined with that name in more than one module or with
more than one arity.

If any module names are given, then only those modules are consulted, (any
ambiguities involving predicates, functions and type constructors in non-listed
modules are ignored). The module names have to be fully qualified, if a module
child is a submodule of module parent, the module name list must include
parent.child; listing just child won’t work, since that is not a fully qualified
module name.

If the ‘=0’ or ‘~—outputfile’ option is given, the output goes to the file named
as the argument of the option; otherwise, it goes to standard output.

If given one or more of the ‘-p’, ‘-t and ‘-’ options, or their long equivalents
‘-—procedures’, ‘--types’, and ‘--functors’, this command prints ambiguities
only for the indicated kinds of constructs. The default is to print ambiguities
for all these three kinds of constructs.

This command does not normally report two kinds of ambiguities among pro-
cedures.

First, this command does not usually report operations that have both func-
tion and predicate forms, with the predicate version having a (usually output)
argument in place of the function’s return value. An example is 1ist.length
being both a function with arity one and a predicate with arity two. The
reason for not reporting this by default is that this is usually an intended am-
biguity, and this command is usually used to find unintended ambiguities, so
that they can be eliminated by renaming. However, users can ask for these
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ambiguities to be printed by specifying either the option ‘-b’; or its long form
‘~-both-pred-and-func’.

Second, this command does not usually report ambiguities involving procedures
that were created by the compiler as a type specialized version of another proce-
dure. The reason for not reporting this by default is that ambiguities among the
names of type specialized procedures cannot arise without ambiguities among
the names of the original, not-yet-type-specialized procedures, and eliminating
the ambiguities among the original names will perforce eliminate the ambigu-
ities among the specialized names as well. However, users can ask for these
ambiguities to be printed by specifying either the option ‘-s’, or its long form
‘~-—typespec’.

trail_details
In grades that specify trailing, prints out low-level details of the state of the
trail. In other grades, it reports an error.

7.11 Declarative debugging

The debugger incorporates a declarative debugger which can be accessed from its command
line. Starting from an event that exhibits a bug, e.g. an event giving a wrong answer, the
declarative debugger can find a bug which explains that behaviour using knowledge of the
intended interpretation of the program only.

Note that this is a work in progress, so there are some limitations in the implementation.

7.11.1 Overview

The declarative debugger tries to find a bug in your program by asking questions about the
correctness of calls executed in your program.

Because pure Mercury code does not have any side effects, the declarative debugger can
make inferences such as “if a call produces incorrect output from correct input, then there
must be a bug in the code executed by one of the descendents of the call”.

The declarative debugger is therefore able to automate much of the ‘detective work’ that
must be done manually when using the procedural debugger.

7.11.2 Concepts

Every CALL event corresponds to an atomic goal, the one printed by the "print" command
at that event. This atom has the actual arguments in the input argument positions and
distinct free variables in the output argument positions (including the return value for
functions). We refer to this as the call atom of the event.

The same view can be taken of EXIT events, although in this case the outputs as well
as the inputs will be bound. We refer to this as the exit atom of the event. The exit atom
is always an instance of the call atom for the corresponding CALL event.

Using these concepts, it is possible to interpret the events at which control leaves a
procedure as assertions about the semantics of the program. These assertions may be true
or false, depending on whether or not the program’s actual semantics are consistent with
its intended semantics.
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EXIT The assertion corresponding to an EXIT event is that the exit atom is valid
in the intended interpretation. In other words, the procedure generates correct
outputs for the given inputs.

FAIL Every FAIL event has a matching CALL event, and a (possibly empty) set of
matching EXIT events between the call and fail. The assertion corresponding
to a FAIL event is that every instance of the call atom which is true in the
intended interpretation is an instance of one of the exit atoms. In other words,
the procedure generates the complete set of answers for the given inputs. (Note
that this does not imply that all exit atoms represent correct answers; some
exit atoms may in fact be wrong, but the truth of the assertion is not affected
by this.)

EXCP Every EXCP event is associated with an exception term, and has a matching
CALL event. The assertion corresponding to an EXCP event is that the call
atom can abnormally terminate with the given exception. In other words, the
thrown exception was expected for that call.

If one of these assertions is wrong, then we consider the event to represent incorrect
behaviour of the program. If the user encounters an event for which the assertion is wrong,
then they can request the declarative debugger to diagnose the incorrect behaviour by giving
the ‘dd’ command to the procedural debugger at that event.

7.11.3 Oracle questions

Once the ‘dd’ command has been given, the declarative debugger asks the user a series of
questions about the truth of various assertions in the intended interpretation. The first
question in this series will be about the validity of the event for which the ‘dd’ command
was given. The answer to this question will nearly always be “no”, since the user has just
implied the assertion is false by giving the ‘dd’ command. Later questions will be about
other events in the execution of the program, not all of them necessarily of the same kind
as the first.

The user is expected to act as an “oracle” and provide answers to these questions based
on their knowledge of the intended interpretation. The debugger provides some help here:
previous answers are remembered and used where possible, so questions are not repeated
unnecessarily. Commands are available to provide answers, as well as to browse the argu-
ments more closely or to change the order in which the questions are asked. See the next
section for details of the commands that are available.

When seeking to determine the validity of the assertion corresponding to an EXIT event,
the declarative debugger prints the exit atom followed by the question ‘Valid?’ for the user
to answer. The atom is printed using the same mechanism that the debugger uses to print
values, which means some arguments may be abbreviated if they are too large.

When seeking to determine the validity of the assertion corresponding to a FAIL event,
the declarative debugger prints the call atom, prefixed by ‘Call’, followed by each of the
exit atoms (indented, and on multiple lines if need be), and prints the question ‘Complete?’
(or ‘Unsatisfiable?’ if there are no solutions) for the user to answer. Note that the user is
not required to provide any missing instance in the case that the answer is no. (A limitation
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of the current implementation is that it is difficult to browse a specific exit atom. This will
hopefully be addressed in the near future.)

When seeking to determine the validity of the assertion corresponding to an EXCP event,
the declarative debugger prints the call atom followed by the exception that was thrown,
and prints the question ‘Expected?’ for the user to answer.

In addition to asserting whether a call behaved correctly or not the user may also assert
that a call should never have occurred in the first place, because its inputs violated some
precondition of the call. For example if an unsorted list is passed to a predicate that is
only designed to work with sorted lists. Such calls should be deemed inadmissible by the
user. This tells the declarative debugger that either the call was given the wrong input by
its caller or whatever generated the input is incorrect.

In some circumstances the declarative debugger provides a default answer to the question.
If this is the case, the default answer will be shown in square brackets immediately after
the question, and simply pressing RET is equivalent to giving that answer.

7.11.4 Commands

At the above mentioned prompts, the following commands may be given. Most commands
can be abbreviated by their first letter.

It is also legal to press RET without specifying a command. If there is a default answer
(see Section 7.11.3 [Oracle questions|, page 68), pressing RET is equivalent to giving that
answer. If there is no default answer, pressing RET is equivalent to the skip command.

yes Answer ‘yes’ to the current question.
no Answer ‘no’ to the current question.
inadmissible

Answer that the call is inadmissible.

trust Answer that the predicate or function the question is about does not contain
any bugs. However predicates or functions called by this predicate/function
may contain bugs. The debugger will not ask you further questions about the
predicate or function in the current question.

trust module
Answer that the module the current question relates to does not contain any
bugs. No more questions about any predicates or functions from this module
will be asked.

skip Skip this question and ask a different one if possible.
undo Undo the most recent answer or mode change.

mode [ top-down | divide-and-query | binary ]
Change the current search mode. The search modes may be abbreviated to
‘td’, ‘dq’ and ‘b’ respectively.
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browse [--web] [n]

Start the interactive term browser and browse the nth argument before answer-
ing. If the argument number is omitted then browse the whole call as if it were
a data term. While browsing a ‘track’ command may be issued to find the
point at which the current subterm was bound (see Section 7.11.7 [Improving
the search], page 74). To return to the declarative debugger question issue a
‘quit’ command from within the interactive term browser. For more informa-
tion on the use of the interactive term browser see the ‘browse’ command in
Section 7.10.4 [Browsing commands]|, page 37 or type ‘help’ from within the
interactive query browser.

4 ¢

Giving the ‘--web’ or

browser.

-w’ option causes the term to be displayed in a web

browse io [--web] n
Browse the n’th I/O action.

print [n]
Print the n’th argument of the current question. If no argument is given, then
display the current question.

print ion
Print the n’th I/O action.

print io n-m
Print the n’th to m’th I/O actions (inclusive).

print io limits
Print the values for which ‘print n’ makes sense.

print io Print some I/O actions, starting just after the last action printed (if there was
one) or at the first available action (if there was not).

format format
Set the default format to format, which should be one of ‘flat’, ‘verbose’ or
‘pretty’.

depth num
Set the maximum depth to which terms are printed to num.

depth io num
Set the maximum depth to which I/O actions are printed to num. I/O actions
are printed using the browser’s ‘print *’ command so the ‘depth io’ command
updates the configuration parameters for the browser’s ‘print *’ command.
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size num Set the maximum number of function symbols to be printed in terms to num.

size io num
Set the maximum number of function symbols to be printed in I/O actions
to num. I/O actions are printed using the browser’s ‘print *’ command so
the ‘size io’ command updates the configuration parameters for the browser’s
‘print *’ command.

width num
Set the number of columns in which terms are to be printed to num.

width io num
Set the number of columns in which I/O actions are to be printed to num. I/0O
actions are printed using the browser’s ‘print *’ command so the ‘width io’
command updates the configuration parameters for the browser’s ‘print *’
command.

lines num
Set the maximum number of lines in terms to be printed to num.

lines io num
Set the maximum number of lines in I/O actions to be printed to num. I/O
actions are printed using the browser’s ‘print *’ command so the ‘lines io’
command updates the configuration parameters for the browser’s ‘print *’
command.

actions num
Set the maximum number of I/O actions to be printed in questions to num.

params Print the current values of browser parameters.

track [-al [term-pathl]
The ‘track’ command can only be given from within the interactive term
browser and tells the declarative debugger to find the point at which the current
subterm was bound. If no argument is given the current subterm is taken to
be incorrect. If a term-path is given then the subterm at term-path relative to
the current subterm will be considered incorrect. The declarative debugger will
ask about the call that bound the given subterm next. To find out the loca-
tion of the unification that bound the subterm, issue an ‘info’ command when
asked about the call that bound the subterm. The declarative debugger can
use one of two algorithms to find the point at which the subterm was bound.
The first algorithm uses some heuristics to find the subterm more quickly than
the second algorithm. It is possible, though unlikely, for the first algorithm to
find the wrong call. The first algorithm is the default. To tell the declarative
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debugger to use the second, more accurate but slower algorithm, give the ‘-a’
or ‘-—accurate’ option to the ‘track’ command.

mark [-a] [term-path]
The ‘mark’ command has the same effect as the ‘track’ command except that
it also asserts that the atom is inadmissible or erroneous, depending on whether
the subterm is input or output respectively.

pd Commence procedural debugging from the current point. This command is
notionally the inverse of the ‘dd’ command in the procedural debugger. The
session can be resumed with a ‘dd --resume’ command.

quit End the declarative debugging session and return to the event at which the
‘dd” command was given. The session can be resumed with a ‘dd --resume’
command.

info List the filename and line number of the predicate the current question is about

as well as the filename and line number where the predicate was called (if this
information is available). Also print some information about the state of the
bug search, such as the current search mode, how many events are yet to be
eliminated and the reason for asking the current question.

help [command]
Summarize the list of available commands or give help on a specific command.

7.11.5 Diagnoses

If the oracle keeps providing answers to the asked questions, then the declarative debugger
will eventually locate a bug. A “bug”, for our purposes, is an assertion about some call
which is false, but for which the assertions about every child of that call are not false (i.e.
they are either correct or inadmissible). There are four different classes of bugs that this
debugger can diagnose, one associated with each kind of assertion.

Assertions about EXIT events lead to a kind of bug we call an “incorrect contour”. This
is a contour (an execution path through the body of a clause) which results in a wrong
answer for that clause. When the debugger diagnoses a bug of this kind, it displays the
exit atoms in the contour. The resulting incorrect exit atom is displayed last. The program
event associated with this bug, which we call the “bug event”, is the exit event at the end
of the contour.

Assertions about FAIL events lead to a kind of bug we call a “partially uncovered atom”.
This is a call atom which has some instance which is valid, but which is not covered by any
of the applicable clauses. When the debugger diagnoses a bug of this kind, it displays the
call atom; it does not, however, provide an actual instance that satisfies the above condition.
The bug event in this case is the fail event reached after all the solutions were exhausted.

Assertions about EXCP events lead to a kind of bug we call an “unhandled exception”.
This is a contour which throws an exception that needs to be handled but which is not
handled. When the debugger diagnoses a bug of this kind, it displays the call atom followed
by the exception which was not handled. The bug event in this case is the exception event
for the call in question.
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If the assertion made by an EXIT, FAIL or EXCP event is false and one or more of the
children of the call that resulted in the incorrect EXIT, FAIL or EXCP event is inadmissible,
while all the other calls are correct, then an “inadmissible call” bug has been found. This
is a call that behaved incorrectly (by producing the incorrect output, failing or throwing
an exception) because it passed unexpected input to one of its children. The guilty call is
displayed as well as the inadmissible child.

After the diagnosis is displayed, the user is asked to confirm that the event located by
the declarative debugger does in fact represent a bug. The user can answer ‘yes’ or ‘y’ to
confirm the bug, ‘no’ or ‘n’ to reject the bug, or ‘abort’ or ‘a’ to abort the diagnosis.

If the user confirms the diagnosis, they are returned to the procedural debugger at the
event which was found to be the bug event. This gives the user an opportunity, if they need
it, to investigate (procedurally) the events in the neighbourhood of the bug.

If the user rejects the diagnosis, which implies that some of their earlier answers may have
been mistakes, diagnosis is resumed from some earlier point determined by the debugger.
The user may now be asked questions they have already answered, with the previous answer
they gave being the default, or they may be asked entirely new questions.

If the user aborts the diagnosis, they are returned to the event at which the ‘dd’ command
was given.

7.11.6 Search modes

The declarative debugger can operate in one of several modes when searching for a bug. Dif-
ferent search modes will result in different sequences of questions being asked by the declar-
ative debugger. The user can specify which mode to use by giving the ‘--search-mode’
option to the ‘dd’ command (see Section 7.10.9 [Declarative debugging mdb commands],
page 57) or with the ‘mode’ declarative debugger command (see Section 7.11.4 [Declarative
debugging commands], page 69).

7.11.6.1 Top-down mode

Using this mode the declarative debugger will ask about the children of the last question the
user answered ‘no’ to. The child calls will be asked about in the order they were executed.
This makes the search more predictable from the user’s point of view as the questions will
more or less follow the program execution. The drawback of top-down search is that it
may require a lot of questions to be answered before a bug is found, especially with deeply
recursive programs.

This search mode is used by default when no other mode is specified.

7.11.6.2 Divide and query mode

With this search mode the declarative debugger attempts to halve the size of the search
space with each question. In many cases this will result in the bug being found after
O(log(N)) questions where N is the number of events between the event where the ‘dd’
command was given and the corresponding ‘CALL’ event. This makes the search feasible for
long running programs where top-down search would require an unreasonably large number
of questions to be answered. However, the questions may appear to come from unrelated
parts of the program which can make them harder to answer.
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7.11.6.3 Suspicion divide and query mode

In this search mode the declarative debugger assigns a suspicion level to each event based
on which parts of the program were executed in failing test cases, but not in passing test
cases. It then attempts to divide the search space into two areas of equal suspicion with
each question. This tends to result in questions about parts of the program executed in a
failing test case, but not in passing test cases.

7.11.6.4 Binary search mode

The user may ask the declarative debugger to do a binary search along the path in the
call tree between the current question and the question that the user last answered ‘no’ to.
This is useful, for example, when a recursive predicate is producing incorrect output, but
the base case is correct.

7.11.7 Improving the search

The number of questions asked by the declarative debugger before it pinpoints the location
of a bug can be reduced by giving it extra information. The kind of extra information that
can be given and how to convey this information are explained in this section.

7.11.7.1 Tracking suspicious subterms

An incorrect subterm can be tracked to the call that bound the subterm from within the
interactive term browser (see Section 7.11.4 [Declarative debugging commands], page 69).

After issuing a ‘track’ command, the next question asked by the declarative debugger
will be about the call that bound the incorrect subterm, unless that call was eliminated
as a possible bug because of an answer to a previous question or the call that bound the
subterm was not traced.

For example consider the following fragment of a program that calculates payments for
a loan:
:- type payment
--->  payment (
date :: date,
amount :: float

:- type date ---> date(int, int, int). Y date(day, month, year).
:- pred get_payment(loan::in, int::in, payment::out) is det.

get_payment (Loan, PaymentNo, Payment) :-
get_payment_amount (Loan, PaymentNo, Amount),
get_payment_date(Loan, PaymentNo, Date),
Payment = payment(Date, Amount).

Suppose that get_payment produces an incorrect result and the declarative debugger
asks:

get_payment (loan(...), 10, payment(date(9, 10, 1977), 10.000000000000)) .
Valid?
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Then if we know that this is the right payment amount for the given loan, but the date
is incorrect, we can track the date(...) subterm and the debugger will then ask us about
get_payment_date:

get_payment (loan(...), 10, payment(date(9, 10, 1977), 10.000000000000)) .
Valid? browse
browser> cd 3/1
browser> 1s
date(9, 10, 1977)
browser> track
get_payment_date(loan(...), 10, date(9, 10, 1977)).
Valid?
Thus irrelevant questions about get_payment_amount are avoided.

If, say, the date was only wrong in the year part, then we could also have tracked the year
subterm in which case the next question would have been about the call that constructed
the year part of the date.

This feature is also useful when using the procedural debugger. For example, suppose
that you come across a ‘CALL’ event and you would like to know the source of a particular
input to the call. To find out you could first go to the final event by issuing a ‘finish’
command. Invoke the declarative debugger with a ‘dd’ command and then track the input
term you are interested in. The next question will be about the call that bound the term.
Issue a ‘pd’ command at this point to return to the procedural debugger. It will now show
the final event of the call that bound the term.

Note that this feature is only available if the executable is compiled in a .decldebug grade
or with the ‘--trace rep’ option. If a module is compiled with the ‘--trace rep’ option
but other modules in the program are not then you will not be able to track subterms
through those other modules.

7.11.7.2 Trusting predicates, functions and modules

The declarative debugger can also be told to assume that certain predicates, functions or
entire modules do not contain any bugs. The declarative debugger will never ask questions
about trusted predicates or functions. It is a good idea to trust standard library modules
imported by a program being debugged.

The declarative debugger can be told which predicates/functions it can trust before the
‘dd’ command is given. This is done using the ‘trust’, ‘trusted’ and ‘untrust’ commands
at the mdb prompt (see Section 7.10.9 [Declarative debugging mdb commands|, page 57 for
details on how to use these commands).

Trust commands may be placed in the ‘.mdbrc’ file which contains default settings for
mdb (see Section 7.6 [Mercury debugger invocation], page 24). Trusted predicates will
also be exported with a ‘save’ command (see Section 7.10.10 [Miscellaneous commands],
page 59).

During the declarative debugging session the user may tell the declarative debugger to
trust the predicate or function in the current question. Alternatively the user may tell the
declarative debugger to trust all the predicates and functions in the same module as the
predicate or function in the current question. See the ‘trust’ command in Section 7.11.4
[Declarative debugging commands]|, page 69.
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7.11.7.3 When different search modes are used

If a search mode is given when invoking the declarative debugger then that search mode will
be used, unless (a) a subterm is tracked during the session, or (b) the user has not answered
‘no’ to any questions yet, in which case top-down search is used until ‘no’ is answered to at
least one question.

If no search mode is specified with the ‘dd’ command then the search mode depends
on if the ‘--resume’ option is given. If it is then the previous search mode will be used,
otherwise top-down search will be used.

You can check the search mode used to find a particular question by issuing an ‘info’
command at the question prompt in the declarative debugger. You can also change the
search mode from within the declarative debugger with the ‘mode’ command.

7.12 Trace counts

A program with debugging enabled may be run in a special mode that causes it to write
out to a trace count file a record of how many times each debugger event in the program
was executed during that run.

Trace counts are useful for determining what parts of a failing program are being run
and possibly causing the failure; this is called slicing. Slices from failing and passing runs
can be compared to see which parts of the program are being executed during failing runs,
but not during passing runs; this is called dicing.

7.12.1 Generating trace counts

To generate a slice for a program run, first compile the program with deep tracing enabled
(either by using the ‘--trace deep’ option or by compiling the program in a debugging
grade). Then invoke the program with the ‘mtc’ script, passing any required arguments
after the program name.

For example:

mtc ./myprog argl arg?2

The program will run as usual, except that when it terminates it will write the number
of times each debugger event was executed to a trace count file.

4 4

‘mtc’ accepts an ‘-0’ or ‘-—output-file’ option. The argument to this option is the
filename to use for the generated trace count file. If this option is not given, then the trace
count will be written to a file with the prefix ‘.mercury_trace_counts’ and a unique suffix.

Ordinarily, the generated trace count file will list only the debugger events that were
actually executed during this run. However, it will list all debugger events, even unexecuted
ones, if ‘mtc’ is given the ‘-c’ or ‘--coverage-test’ option.

‘mtc’ also supports two more options intended for coverage testing: ‘-s’ or
‘-—summary-file’, and ‘--summary-count’. These each set an option in the
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MERCURY_OPTIONS  environment  variable, ‘-—trace-count-summary-file’  and
‘-—trace-count-summary-max’ respectively. For the documentation of these ‘mtc’ options,
see the documentation of MERCURY_OPTIONS environment variable.

Trace count files can be manipulated with the ‘mtc_union’ and ‘mtc_diff’ tools, and
they can be analysed by the ‘mslice’ and ‘mdice’ tools. They can also be used to help
direct a declarative debugging search (see Section 7.11.6 [Search modes], page 73).

7.12.2 Combining trace counts

The ‘mtc_union’ tool can be used to combine several trace count files into one trace count
file. You need to use this when you have many trace count files you wish to analyse with
‘mslice’ or ‘mdice’.

‘mtc_union’ is invoked by issuing a command of the form:

mtc_union [-v] -o output_file filel file2 ...

‘filel’, ‘file2’, etc. are the trace count files that should be combined. The new trace
count file will be written to ‘output_file’. This file will preserve the count of the test cases
that contributed to its contents, even if some of ‘filel’, ‘file2’, etc themselves were created
by ‘mtc_union’. If the ‘-v’ or ‘--verbose’ option is specified then a progress message will
be displayed as each file is read and its contents merged into the union.

The ‘mtc_diff’ tool can be used to subtract one trace count file from another.

‘mtc_diff’ is invoked by issuing a command of the form:

mtc_diff -o output_file filel file2

‘filel’ and ‘file2’ must both be trace counts files. The output, written to
‘output_file’, will contain the difference between the trace counts in ‘filel’ and ‘file2’
for every event that occurs in ‘filel’. Unlike ‘mtc_union’, ‘mtc_diff’ does not preserve
the count of the test cases that contributed to its contents in any useful way.

7.12.3 Slicing

Once a slice has been generated it can be viewed in various ways using the mslice tool. The
output of the mslice tool will look something like the following:

Procedure Path/Port File:Line Count (1)
pred mrg.merge/3-0  CALL mrg.m:60 14 (1)
pred mrg.merge/3-0  EXIT mrg.m:60 14 (1)
pred mrg.msort_n/4-0 CALL mrg.m:33 12 (1)
pred mrg.msort_n/4-0 EXIT mrg.m:33 12 (1)
pred mrg.msort_n/4-0 <7;> mrg.m:35 12 (D

Each row corresponds to a label in the program. The meanings of the columns are as
follows:
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e ‘Procedure’: This column displays the procedure that the label relates to.

e ‘Path/Port’: For interface events this column displays the event port, while for internal
events it displays the goal path. (See Section 7.3 [Tracing of Mercury programs|, page 19
for an explanation of interface and internal events.)

e ‘File:Line’: This column displays the context of the event.

e ‘Count’: This column displays how many times the event was executed. The number
in parentheses for each event row says in how many runs the event was executed. The
number in parentheses in the heading row (after the word "Count") indicates how
many runs were represented in the trace counts file analysed by the mslice tool.

The mslice tool is invoked using a command of the form:

mslice [-s sortspec] [-1 N] [-m module] [-n N] [-p N] [-f N] file

where ‘file’ is a trace count file, generated either directly by a program run or indirectly
by the ‘mtc_union’ or ‘mtc_diff’ tools.

The ‘-s’ or ‘=-sort’ option specifies how the output should be sorted. ‘sortspec’ should
be a string made up of any combination of the letters ‘cCtT’. Each letter specifies a column
and direction to sort on:

e ‘c’: Count ascending
e ‘C’: Count descending
e ‘t’: Number of runs ascending

e ‘T”: Number of runs descending

For example, the option ‘-s cT’ will sort the output table by the Count column in
ascending order. If the counts for two or more events are the same, then those events will
be sorted by number of runs in descending order.

The default is to sort descending on the Count column.
The ‘-1’ or ‘~-1imit’ option limits the output to ‘N’ lines.
The ‘-m’ or ‘--module’ option limits the output to events only from the given module.

The ‘-n’ or ‘~-max-name-column-width’ option’s argument gives the maximum width
of the column containing predicate and function names. If the argument is zero, there is no
maximum width.

The ‘-p’ or ‘--max-path-column-width’ option’s argument gives the maximum width of
the column containing ports and goal paths. If the argument is zero, there is no maximum
width.
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The ‘-f’ or ‘~-max-file-column-width’ option’s argument gives the maximum width
of the column containing file names and line numbers. If the argument is zero, there is no
maximum width.

7.12.4 Dicing

A dice is a comparison between passing and failing runs of a program.

Dice are created using the ‘mdice’ tool. To use the ‘mdice’ tool, one must first generate
a set of trace count files for passing runs and a set of trace count files for failing runs using
the ‘mtc’ tool (Section 7.12.1 [Generating trace counts], page 76). Once this has been done,
and the union of each set computed using ‘mtc_union’, ‘mdice’ can be used to display a
table of statistics that compares the passing runs to the failing runs.

Here is an example of the output of the ‘mdice’ tool:

Procedure Path/Port File:Line Pass (3) Fail Suspicion
pred s.mrg/3-0 <s2;c2;e;> s.m:74 0 (0) 1 1.00
pred s.mrg/3-0 <s2;c2;t;> s.m:67 10 (3) 4 0.29
pred s.mrg/3-0  CALL s.m:64 18 (3) 7 0.28
pred s.mrg/3-0  EXIT s.m:64 18 (3) 7 0.28

This example tells us that the ‘else’ in ‘s.m’ on line 74 was executed once in the failing
test run, but never during the passing test runs, so this would be a good place to start
looking for a bug.

Each row corresponds to an event in the program. The meanings of the columns are as
follows:

‘Procedure’: This column displays the procedure the event relates to.

e ‘Path/Port’: For interface events this column displays the event port, while for internal
events it displays the goal path. (See Section 7.3 [Tracing of Mercury programs|, page 19
for an explanation of interface and internal events.)

e ‘File:Line’: This column displays the context of the event.

e ‘Pass (total passing test runs)’: This columns displays the total number of times
the event was executed in all the passing test runs. This is followed by a number in
parentheses which indicates the number of test runs the event was executed in. The
heading of this column also has a number in parentheses which is the total number of
passing test cases.

e ‘Fail’: This column displays the number of times the goal was executed in the failing
test run(s).

e ‘Suspicion’: This columns displays a number between 0 and 1 which gives an indication
of how likely a particular goal is to contain a bug. The suspicion is calculated as
Suspicion = F / (P + F) where F is the number of times the goal was executed in
failing runs and P is the number of times the goal was executed in passing runs.
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The ‘mdice’ tool is invoked with a command of the form:

mdice [-s sortspec] [-1 N] [-m module] [-n N] [-p N] [-f N] passfile failfile

‘passfile’ is a trace count file, generated either directly by a passing program run or as
the union of the trace count files of passing program runs. ‘failfile’ is a trace count file,
generated either directly by a failing program run or as the union of the trace count files of
failing program runs.

The table can be sorted on the Pass, Fail or Suspicion columns, or a combination of
these. This can be done with the ‘-s’ or ‘--sort’ option. The argument of this option is a
string made up of any combination of the letters ‘pPfFsS’. The letters in the string indicate
how the table should be sorted:

e ‘p’: Pass ascending

e ‘P’: Pass descending

e ‘f’: Fail ascending

e ‘F’: Fail descending

e ‘s’: Suspicion ascending

e ‘S’: Suspicion descending

For example the string "SF" means sort the table by suspicion in descending order, and
if any two suspicions are the same, then by number of executions in the failing run(s), also
in descending order.

The default is to sort descending on the Suspicion column.
The option ‘-1’ or ‘--1imit’ can be used to limit the number of lines displayed.
The ‘-m’ or ‘--module’ option limits the output to the given module and any submodules.

The ‘-n’ or ‘~-max-name-column-width’ option’s argument gives the maximum width
of the column containing predicate and function names. If the argument is zero, there is no
maximum width.

The ‘-p’ or ‘--max-path-column-width’ option’s argument gives the maximum width of
the column containing ports and goal paths. If the argument is zero, there is no maximum

width.

The ‘-f’ or ‘~-max-file-column-width’ option’s argument gives the maximum width
of the column containing file names and line numbers. If the argument is zero, there is no
maximum width.
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7.12.5 Coverage testing

Coverage testing is the process of finding out which parts of the code of a program are not
executed during any test case, so that new test cases can be designed specifically to exercise
those parts.

The first step in coverage testing a Mercury program is compiling that program with ex-
ecution tracing enabled, either by using the ‘--trace deep’ option or by compiling the pro-
gram in a debugging grade. The second step is to execute that program on all its test cases
with coverage testing enabled. This can be done either by running the program with ‘mtc
--coverage-test’, or by including one of the corresponding options (‘--coverage-test’
or ‘--coverage-test-if-exec=programname’) in the value of the MERCURY_OPTIONS envi-
ronment variable. These runs generate a set of trace counts files that can be given to the
Mercury test coverage tool, the ‘mcov’ program. As usual, trace count files are named with
the prefix ‘.mercury_trace_counts’ if the ‘mtc ——output-file’ option is not given.

The ‘mcov’ tool is invoked with a command of the form:

mcov [-d] [-v] [-o output_file] tracecountfilel

The arguments consist of one or more trace count files. The output will normally be
a list of all the procedures in the program that were not executed in any of the runs that
generated these trace count files. The output will go to standard output unless this is
overridden by the ‘-0’ or ‘~-output-file’ option.

If the ‘-d’ or ‘--detailed’ option is specified, then the output will list all the events in
the program that were not executed in any of these runs. This option can thus show the
unexecuted parts of the executed procedures.

If the ‘-v’ or ‘--verbose’ option is specified, then a progress message will be displayed
as each file is read.

8 Profiling

8.1 Profiling introduction

To obtain the best trade-off between productivity and efficiency, programmers should not
spend too much time optimizing their code until they know which parts of the code are really
taking up most of the time. Only once the code has been profiled should the programmer
consider making optimizations that would improve efficiency at the expense of readability
or ease of maintenance. A good profiler is therefore a tool that should be part of every
software engineer’s toolkit.

Mercury programs can be analyzed using two distinct profilers. The Mercury profiler
‘mprof’ is a conventional call-graph profiler (or graph profiler for short) in the style of
‘gprof’. The Mercury deep profiler ‘mdprof’ is a new kind of profiler that associates a lot
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more context with each measurement. ‘mprof’ can be used to profile either time or space,
but not both at the same time; ‘mdprof’ can profile both time and space at the same time.

The parallel execution of Mercury programs can be analyzed with a third profiler called
‘threadscope’. ‘threadscope’ allows programmers to visualise CPU utilisation for work,
garbage collection, and idle time. This enables programmers to see the effect of paral-
lelization decisions such as task granularity. The ‘threadscope’ tool is not included with
the Melbourne Mercury Compiler, See Threadscope: Performance Tuning Parallel Haskell
Programs.

8.2 Building profiled applications

To enable profiling, your program must be built with profiling enabled. The three different
profilers require different support, and thus you must choose which one to enable when you
build your program.

4 i

e To build your program with time profiling enabled for ‘mprof’, pass the ‘-p
(‘--profiling’) option to ‘mmc’ (and also to ‘mgnuc’ and ‘ml’, if you invoke them
separately).

e To build your program with memory profiling enabled for ‘mprof’, pass the
‘-—memory-profiling’ option to ‘mmc’, ‘mgnuc’ and ‘ml’.

e To build your program with deep profiling enabled (for ‘mdprof’), pass the
‘-—deep-profiling’ option to ‘mmc’, ‘mgnuc’ and ‘ml’.

e To build your program with threadscope profiling enabled (for ‘threadscope’). pass
the ‘--parallel’ and ‘--threadscope’ options to ‘mmc’, ‘mgnuc’ and ‘ml’.

If you are using Mmake, then you pass these options to all the relevant programs
by setting the ‘GRADEFLAGS’ variable in your Mmakefile, e.g. by adding the line
‘GRADEFLAGS=--profiling’. (For more information about the different grades, see
Section 9.8 [Compilation model options|, page 110.)

Enabling ‘mprof’ or ‘mdprof’ profiling has several effects. First, it causes the compiler
to generate slightly modified code, which counts the number of times each predicate or
function is called, and for every call, records the caller and callee. With deep profiling,
there are other modifications as well, the most important impact of which is the loss of
tail-recursion. (By default, the deep profiling versions of the library and runtime are built
with ‘--stack-segments’ in order to minimize this impact.) Second, your program will be
linked with versions of the library and runtime that were compiled with the same kind of
profiling enabled. Third, if you enable graph profiling, the compiler will generate for each
source file the static call graph for that file in ‘module.prof’.

Enabling ‘threadscope’ profiling causes the compiler to build the program against a
different runtime system. This runtime system logs events relevant to parallel execution.
‘threadscope’ support is not compatible with all processors, see ‘README. ThreadScope’ for
more information.

8.3 Creating profiles

Once you have created a profiled executable, you can gather profiling information by running
the profiled executable on some test data that is representative of the intended uses of the
program. The profiling version of your program will collect profiling information during
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execution, and save this information at the end of execution, provided execution terminates
normally and not via an abort.

Executables compiled with ‘~-profiling’ save profiling data in the files ‘Prof.Counts’,
‘Prof.Decl’, and ‘Prof.CallPair’. (‘Prof.Decl’ contains the names of the procedures and
their associated addresses, ‘Prof.CallPair’ records the number of times each procedure
was called by each different caller, and ‘Prof.Counts’ records the number of times that ex-
ecution was in each procedure when a profiling interrupt occurred.) Executables compiled
with ‘--memory-profiling’ will use two of those files (‘Prof.Decl’ and ‘Prof.CallPair’)
and two others: ‘Prof .MemoryWords’ and ‘Prof.MemoryCells’. Executables compiled with
‘-—deep-profiling’ save profiling data in two files whose names will have form ‘pro-
gramname _on_date _at_time.data’ and ‘programname _on_date_at_time.procrep’. (On
Windows, the .exe suffix will be omitted from programname.) Executables compiled with
the ‘-—threadscope’ option write profiling data to a file whose name is that of the program
being profiled with the extension ‘.eventlog’. For example, the profile for the program
‘my_program’ would be written to the file ‘my_program.eventlog’.

It is also possible to combine ‘mprof’ profiling results from multiple runs of your program.
You can do by running your program several times, and typing ‘mprof_merge_counts’ after
each run. It is not (yet) possible to combine ‘mdprof’ profiling results from multiple runs
of your program.

Due to a known timing-related bug in our code, you may occasionally get segmentation
violations when running your program with ‘mprof’ profiling enabled. If this happens, just
run it again — the problem occurs only very rarely. The same vulnerability does not occur
with ‘mdprof’ profiling.

With the ‘mprof’ and ‘mdprof’ profilers, you can control whether time profiling measures
real (elapsed) time, user time plus system time, or user time only, by including the options
‘=Tr’, ‘=Tp’, or ‘-Tv’ respectively in the environment variable MERCURY_OPTIONS when you
run the program to be profiled. Currently, only the ‘~Tr’ option works on Cygwin; on that
platform it is the default.

The default is user time plus system time, which counts all time spent executing the
process, including time spent by the operating system working on behalf of the process,
but not including time that the process was suspended (e.g. due to time slicing, or while
waiting for input). When measuring real time, profiling counts even periods during which
the process was suspended. When measuring user time only, profiling does not count time
inside the operating system at all.

8.4 Using mprof for time profiling

To display the graph profile information gathered from one or more profiling runs, just type
‘mprof’ or ‘mprof -c’. (For programs built with ‘~~high-level-code’, you need to also
pass the ‘--no-demangle’ option to ‘mprof’ as well.) Note that ‘mprof’ can take quite a
while to execute (especially with ‘-c’), and will usually produce quite a lot of output, so
you will usually want to redirect the output into a file with a command such as ‘mprof >
mprof .out’.

The output of ‘mprof -c’ consists of three major sections. These are named the call
graph profile, the flat profile and the alphabetic listing. The output of ‘mprof’ contains the
flat profile and the alphabetic listing only.
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The call graph profile presents the local call graph of each procedure. For each proce-
dure it shows the parents (callers) and children (callees) of that procedure, and shows the
execution time and call counts for each parent and child. It is sorted on the total amount
of time spent in the procedure and all of its descendents (i.e. all of the procedures that it
calls, directly or indirectly.)

The flat profile presents the just execution time spent in each procedure. It does not
count the time spent in descendents of a procedure.

The alphabetic listing just lists the procedures in alphabetical order, along with their
index number in the call graph profile, so that you can quickly find the entry for a particular
procedure in the call graph profile.

The profiler works by interrupting the program at frequent intervals, and each time
recording the currently active procedure and its caller. It uses these counts to determine
the proportion of the total time spent in each procedure. This means that the figures
calculated for these times are only a statistical approximation to the real values, and so
they should be treated with some caution. In particular, if the profiler’s assumption that
calls to a procedure from different callers have roughly similar costs is not true, the graph
profile can be quite misleading.

The time spent in a procedure and its descendents is calculated by propagating the times
up the call graph, assuming that each call to a procedure from a particular caller takes the
same amount of time. This assumption is usually reasonable, but again the results should
be treated with caution. (The deep profiler does not make such an assumption, and hence
its output is significantly more reliable.)

Note that any time spent in a C function (e.g. time spent in ‘GC_malloc()’, which does
memory allocation and garbage collection) is credited to the Mercury procedure that called
that C function.

Here is a small portion of the call graph profile from an example program.

called/total parents
index ‘time self descendents called+self name index
called/total children
<spontaneous>
[1] 100.0 0.00 0.75 0 call_engine_label [1]
0.00 0.75 1/1 do_interpreter [3]
0.00 0.75 1/1 do_interpreter [3]
[2] 100.0 0.00 0.75 1 io.run/0(0) [2]
0.00 0.00 1/1 io.init_state/2(0) [11]
0.00 0.74 1/1 main/2(0) [4]
0.00 0.75 1/1 call_engine_label [1]

[3] 100.0 0.00 0.75 1 do_interpreter [3]
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.74
.65
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1/1
1/1
1/10

1/1

1

1/1
40320/40320

1+8
5914/5914

5914/5914
5914
5914/5914

40319
5914/5914
5914+40319

40319

3/69283
69280/69283
69283

3/3
69280/69280
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io.run/0(0) [2]

io.run/0(0) [2]

main/2(0) [4]
sort/2(0) [5]
print_list/3(0) [16]
io.write_string/3(0) [18]

main/2(0) [4]
sort/2(0) [5]

list.perm/2(0) [6]

sorted/1(0) [10]

list.perm/2(0) [6]
sort/2(0) [5]
list.perm/2(0) [6]
list.insert/3(2) [7]
list.perm/2(0) [6]

list.perm/2(0) [6]
list.insert/3(2) [7]
list.delete/3(3) [8]

list.delete/3(3) [8]

list.insert/3(2) [7]
list.delete/3(3) [8]

list.delete/3(3) [8]

tree234.set/4(0) [15]
sorted/1(0) [10]

compare/3(0) [9]
__Compare___io__stream/0(0) [20]
builtin_compare_int/3(0) [27]
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0.00 0.09  40320/40320 sort/2(0) [5]
[10] 13.3  0.00 0.09 40320 sorted/1(0) [10]
0.09 0.09  69280/69283 compare/3(0) [9]

The first entry is ‘call_engine_label’ and its parent is ‘<spontaneous>’, meaning
that it is the root of the call graph. (The first three entries, ‘call_engine_label’,
‘do_interpreter’, and ‘io.run/0’ are all part of the Mercury runtime; ‘main/2’ is the
entry point to the user’s program.)

Each entry of the call graph profile consists of three sections, the parent procedures, the
current procedure and the children procedures.

Reading across from the left, for the current procedure the fields are:

e The unique index number for the current procedure. (The index numbers are used only
to make it easier to find a particular entry in the call graph.)

e The percentage of total execution time spent in the current procedure and all its de-
scendents. As noted above, this is only a statistical approximation.

e The “self” time: the time spent executing code that is part of current procedure. As
noted above, this is only a statistical approximation.

e The descendent time: the time spent in the current procedure and all its descendents.
As noted above, this is only a statistical approximation.

e The number of times a procedure is called. If a procedure is (directly) recursive, this
column will contain the number of calls from other procedures, a plus sign, and then
the number of recursive calls. These numbers are exact, not approximate.

e The name of the procedure followed by its index number.

The predicate or function names are not just followed by their arity but also by their
mode in brackets. A mode of zero corresponds to the first mode declaration of that predicate
in the source code. For example, ‘1ist.delete/3(3)’ corresponds to the ‘(out, out, in)’
mode of ‘1list.delete/3’.

Now for the parent and child procedures the self and descendent time have slightly
different meanings. For the parent procedures the self and descendent time represent the
proportion of the current procedure’s self and descendent time due to that parent. These
times are obtained using the assumption that each call contributes equally to the total time
of the current procedure.

8.5 Using mprof for profiling memory allocation

To create a profile of memory allocations, you can invoke ‘mprof’ with the ‘-m’ (‘--profile
memory-words’) option. This will profile the amount of memory allocated, measured in units
of words. (A word is 4 bytes on a 32-bit architecture, and 8 bytes on a 64-bit architecture.)

Alternatively, you can use ‘mprof’’s ‘-M’ (‘--profile memory-cells’) option. This will
profile memory in units of “cells”. A cell is a group of words allocated together in a single
allocation, to hold a single object. Selecting this option this will therefore profile the number
of memory allocations, while ignoring the size of each memory allocation.
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With memory profiling, just as with time profiling, you can use the ‘-¢’ (‘-~-call-graph’)
option to display call graph profiles in addition to flat profiles.

When invoked with the ‘-m’ option, ‘mprof’ only reports allocations, not deallocations
(garbage collection). It can tell you how much memory was allocated by each procedure,
but it won’t tell you how long the memory was live for, or how much of that memory was
garbage-collected. This is also true for ‘mdprof’.

The memory retention profiling tool described in the next section can tell you which
memory cells remain on the heap.

8.6 Using mprof for profiling memory retention

When a program is built with memory profiling enabled and uses the Boehm garbage
collector, i.e. a grade with ‘.memprof.gc’ modifiers, each memory cell is “attributed” with
information about its origin and type. This information can be collated to tell you what
kinds of objects are being retained when the program executes.

To do this, you must instrument the program by adding calls to benchmarking.report_
memory_attribution/1 or benchmarking.report_memory_attribution/3 at points of in-
terest. The first argument of the report_memory_attribution predicates is a string that is
used to label the memory retention data corresponding to that call in the profiling output.
You may want to call them from within ‘trace’ goals:

trace [run_time(env("SNAPSHOTS")), io('I0)] (
benchmarking.report_memory_attribution("Phase 2", !I0)

)

If a program operates in distinct phases you may want to add a call in between the
phases. The ‘report_memory_attribution’ predicates do nothing in other grades, so are
safe to leave in the program.

3

Next, build the program in a ‘.memprof.gc’ grade. After the program has finished
executing, it will generate a file called ‘Prof.Snapshots’ in the current directory. Run
‘mprof -s’ to view the profile. You will see the memory cells which were on the heap at
each time that ‘report_memory_attribution’ was called: the origin of the cells, and their
type constructors.

Passing the option ‘-T’ will group the profile first by type constructors, then by proce-
dure. The ‘-b’ option produces a brief profile by hiding the secondary level of information.
Memory cells allocated by the Mercury runtime system itself are normally excluded from
the profile; they can be viewed by passing the ‘-r’ option.

Note that Mercury values which are dead may in fact be still reachable from the various
execution stacks. This is particularly noticeable on the high-level C back-end, as the C
compiler does not take conservative garbage collection into account and Mercury values
may linger on the C stack for longer than necessary. The low-level C grades should suffer
to a lesser extent.

The attribution requires an extra word of memory per cell, which is then rounded up by
the memory allocator. This is accounted for in ‘mprof’ output, but the memory usage of
the program may be significantly higher than in non-memory profiling grades.
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8.7 Using mdprof

The user interface of the deep profiler is a browser. To display the information contained in
a deep profiling data file (whose name will have the form ‘programname _date_time.data’
unless you renamed it), start up your browser and give it a URL of the form
‘http://server.domain.name/cgi-bin/mdprof_cgi?/full/path/name/Deep.data’.

The ‘server.domain.name’ part should be the name of a machine with the fol-
lowing qualifications: it should have a web server running on it, and it should
have the ‘mdprof_cgi’ program installed in the web server’s CGI program di-
rectory.  (On many Linux systems, this directory is ‘/usr/lib/cgi-bin’.)  The
‘/full/path/name/programname _date_time.data’ part should be the full path name of
the deep profiling data file whose data you wish to explore. The name of this file must
not have percent signs in it, and it must end in the suffix ‘.data’. (The deep profiler will
replace this suffix with ‘.procrep’ to get access to the other file generated by the profiling
run.)

When you start up ‘mdprof’ using the command above, you will see a list of the usual
places where you may want to start looking at the profile. Each place is represented by
a link. Clicking on and following that link will give you a web page that contains both
the profile information you asked for and other links, some of which present the same
information in a different form and some of which lead to further information. You explore
the profile by clicking on links and looking at the resulting pages.

The deep profiler can generate several kinds of pages.

The menu page
The menu page gives summary information about the profile, and the usual
starting points for exploration.

Clique pages
Clique pages are the most fundamental pages of the deep profiler. Each clique
page presents performance information about a clique, which is either a single
procedure or a group of mutually recursive procedures, in a given ancestor
context, which in turn is a list of other cliques starting with the caller of the
entry point of the clique and ending with the clique of the ‘main’ predicate.

Each clique page lists the closest ancestor cliques, and then the procedures of
the clique. It gives the cost of each call site in each procedure, as well as the
cost of each procedure in total. These costs will be just those incurred in the
given ancestor context; the costs incurred by these call sites and procedures in
other ancestor contexts will be shown on other clique pages.

Procedure pages
Procedure pages give the total cost of a procedure and its call sites in all ancestor
contexts.

Module pages
Module pages give the total cost of all the procedures of a module.

Module getters and setters pages
These pages identifies the getter and setter procedures in a module. Getters
and setters are simply predicates and functions that contain ‘_get_" and ‘_set_’
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respectively in their names; they are usually used to access fields of data struc-
tures.

Program modules page
The program modules page gives the list of the program’s modules.

Top procedure pages
Top procedure pages identify the procedures that are most expensive as mea-
sured by various criteria.

Procedure caller pages
A procedure caller page lists the call sites, procedures, modules or cliques that
call the given procedure.

When exploring a procedure’s callers, you often want only the ancestors that are at
or above a certain level of abstraction. Effectively you want to draw a line through the
procedures of the program, such that you are interested in the procedures on or above the
line but those below the line. Since we want to exclude procedures below the line from
procedure caller pages, we call this line an exclusion contour.

You can tell the deep profiler where you want to draw this line by giving it a ‘exclusion
contour file’. The name of this file should be the same as the name of the deep profiling
data file, but with the suffix ‘.data’ replaced with ‘. contour’. This file should consist of a
sequence of lines, and each line should contain two words. The first word should be either
‘all’ or ‘internal’; the second should the name of a module. If the first word is ‘all’,
then all procedures in the named module are below the exclusion contour; if the first word
is ‘internal’, then all internal (non-exported) procedures in the named module are below
the exclusion contour. Here is an example of an exclusion contour file.

all bag
all list
all map
internal set

8.8 Using threadscope

The ThreadScope tools are not distributed with Mercury. For information about how to
install them please see the ‘README. ThreadScope’ file included in the Mercury distribution.

ThreadScope provides two programs that can be used to view profiles in ‘.eventlog’

files. The first, ‘show-ghc-events’, lists the ThreadScope events sorted from the earliest
to the latest, while the second, ‘threadscope’ provides a graphical display for browsing the
profile.

3

Both programs accept the name of a ‘.eventlog’ file on the command line. The
‘threadscope’ program also provides a menu from which users can choose a file to open.

8.9 Profiling and shared libraries

On some operating systems, Mercury’s profiling doesn’t work properly with shared libraries.
The symptom is errors (‘map.lookup failed’) or warnings from ‘mprof’. On some systems,
the problem occurs because the C implementation fails to conform to the semantics specified
by the ISO C standard for programs that use shared libraries. For other systems, we have
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not been able to analyze the cause of the failure (but we suspect that the cause may be the
same as on those systems where we have been able to analyze it).

If you get errors or warnings from ‘mprof’, and your program is dynamically linked,
try rebuilding your application statically linked, e.g. by using ‘MLFLAGS=--static’ in your
Mmakefile. Another work-around that sometimes works is to set the environment variable
LD_BIND_NOW to a non-null value before running the program.

9 Invocation

This section contains a brief description of all the options available for ‘mmc’, the Mercury
compiler. Sometimes this list is a little out-of-date; use ‘mmc --help’ to get the most up-
to-date list.

9.1 Invocation overview

mmc is invoked as

mmc [options] arguments

Arguments can be either module names or file names. Arguments ending in ‘.m’ are

assumed to be file names, while other arguments are assumed to be module names, with .’
(rather than ‘__’) as module qualifier. If you specify a module name such as ‘foo.bar.baz’,
the compiler will look for the source in files ‘foo.bar.baz.m’, ‘bar.baz.m’, and ‘baz.m’, in
that order.

Options are either short (single-letter) options preceded by a single ‘=, or long options
preceded by ‘-=’. Options are case-sensitive. We call options that do not take arguments
flags. Single-letter flags may be grouped with a single ‘=’, e.g. ‘-vVc’. Single-letter flags
may be negated by appending another trailing ‘-’, e.g. ‘-v-’. Long flags may be negated
by preceding them with ‘no-’, e.g. ‘~—no-verbose’.

9.2 Warning options

-w
--inhibit-warnings
Disable all warning messages.

--inhibit-style-warnings
Disable all warning messages about programming style.

--halt-at-warn
This option causes the compiler to treat all warnings as if they were errors when
generating target code. This means that if the compiler issues any warning, it
will not generate target code — instead, it will return a non-zero exit status.

--halt-at-warn-make-int

--halt-at-warn-make-interface
This option causes the compiler to treat all warnings as if they were errors
when generating an interface file (a ‘.int’, ‘.int0’, ‘.int2’ or ‘.int3’ file).
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This means that if the compiler issues any warnings at that time, it will not
generate the interface file — instead, it will return a non-zero exit status.

--halt-at-warn-make-opt
This option causes the compiler to treat all warnings as if they were errors when
generating an optimization file (a ‘.opt’ or ‘.trans_opt’ file). This means
that if the compiler issues any warnings at that time, it will not generate the
optimization file — instead, it will return a non-zero exit status.

--halt-at-syntax-error
This option causes the compiler to halt immediately after syntax checking and
not do any semantic checking if it finds any syntax errors in the program.

--no-halt-at-invalid-interface

This option operates when the compiler is invoked with the —make—interface
option to generate .int and .int2 files for one or more modules. In its default
setting, ‘~~halt-at-invalid-interface’, it causes the compiler to check the
consistency of those parts of each of those modules that are intended to end
up in the .int and .int2 files. If these checks find any problems, the compiler
will stop without generating those files after printing an error message for each
problem.

Users can prevent this behavior, and thus allow the generation of invalid inter-
face files, by specifying ‘--no-halt-at-invalid-interface’.

--no-warn-accumulator-swaps
Do mnot warn about argument order rearrangement caused by
‘~—introduce-accumulators’.

--no-warn-singleton-vars

--no-warn-singleton-variables
Do not warn about variables which only occur once, despite their names not
starting with an underscore.

--no-warn-repeated-singleton-vars

--no-warn-repeated-singleton-variables
Do not warn about variables which occur more than once, despite their names
starting with an underscore.

--no-warn-missing-det-decls
For predicates that are local to a module (those that are not exported), don’t
issue a warning if the ‘pred’ or ‘mode’ declaration does not have a determinism
annotation. Use this option if you want the compiler to perform automatic
determinism inference for non-exported predicates.
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—--no-warn-det—-decls-too-lax
Do not warn about determinism declarations which could have been stricter.

--no-warn-inferred-erroneous
Do not warn about procedures whose determinism is inferred erroneous but
whose determinism declarations are laxer.

--no-warn-insts-without-matching-type
Do not warn about insts that are not consistent with any types in scope.

--warn-insts-with-functors-without-type
Warn about insts that do specify functors but do not specify what type they
are for.

-—warn-unused-imports
Warn about modules that are imported but not used.

--no-warn-nothing-exported
Do not warn about modules whose interface sections have no exported predi-
cates, functions, insts, modes or types.

--warn-unused-args
Warn about predicate or function arguments which are not used.

--no-warn-interface-imports
Do not warn about modules imported in the interface which are not used in the
interface.

--warn-interface-imports-in-parents
Warn about modules imported in the interface a parent module which are not
used in the interface of that module.

-—warn-missing-opt-files
Warn about ¢.opt’ files that cannot be opened.

--warn-missing-trans-opt-files
Warn about ‘.trans_opt’ files that cannot be opened.

--warn-inconsistent-pred-order

--warn-inconsistent-pred-order-clauses
Generate a warning if the order of the definitions does not match the order of
the declarations for either the exported predicates and functions of the module,
or for the nonexported predicates and functions of the module. Applies for
definitions by Mercury clauses.
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--warn-inconsistent-pred-order-foreign-procs
Generate a warning if the order of the definitions does not match the order of
the declarations for either the exported predicates and functions of the module,
or for the nonexported predicates and functions of the module. Applies for
definitions by either Mercury clauses or foreign_proc pragmas.

--no-warn-non-contiguous-decls
Do not generate a warning if the mode declarations of a predicate or function
don’t all immediately follow its predicate or function declaration.

--no-warn-non-contiguous-clauses
Do not generate a warning if the clauses of a predicate or function are not
contiguous.

—--warn-non-contiguous-foreign-procs
Generate a warning if the clauses and foreign_procs of a predicate or function
are not contiguous.

-—-warn-non-stratification
Warn about possible non-stratification of the predicates and/or functions in the
module. Non-stratification occurs when a predicate or function can call itself
negatively through some path along its call graph.

--no-warn-simple-code
Disable warnings about constructs which are so simple that they are likely to
be programming errors.

--warn-duplicate-calls
Warn about multiple calls to a predicate with the same input arguments.

--warn-implicit-stream-calls
Warn about calls to I/O predicates that could take explicit stream arguments,
but do not do so.

--no-warn-missing-module-name
Disable warnings for modules that do not start with a ‘: - module’ declaration.

--no-warn-wrong-module-name
Disable warnings for modules whose
the module’s file name.

¢

:— module’ declaration does not match

--no-warn-smart-recompilation
Disable warnings from the smart recompilation system.
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--no-warn-undefined-options-vars

--no-warn-undefined-options-variables
Do not warn about references to undefined variables in options files with
3 )
--make’.

--warn-suspicious-recursion
Warn about recursive calls which are likely to have problems, such as leading
to infinite recursion.

--warn-non-tail-recursion type
Warn about any recursive calls that are not tail recursive. Implies the next two
options. Warn about any recursive calls that are not tail recursive. type may
be ‘self’, ‘self-and-mutual’ or ‘none’.

-—-warn-obvious-non-tail-recursion
Warn about recursive calls that are not tail calls even if they obviously cannot
be tail calls, because they are followed by other recursive calls.

--no-warn-target-code
Disable warnings from the compiler used to process the target code (e.g. gcc).

--no-warn-up-to-date
Do not warn if targets specified on the command line with ‘--make’ are already
up-to-date.

--no-warn-stubs
Disable warnings about procedures for which there are no clauses. Note that
this option only has any effect if the ‘~-~allow-stubs’ option (see Section 9.6
[Language semantics options|, page 108) is enabled.

--warn-dead-procs
--warn-dead-procedures
Warn about procedures which are never called.

--warn-dead-preds
--warn-dead-predicates
Warn about predicates that have no procedures which are ever called.

--no-warn-table-with-inline
Disable warnings about tabled procedures that also have a ‘pragma inline’
declaration.

--no-warn-non-term-special-preds
Do not warn about types that have user-defined equality or comparison pred-
icates that cannot be proved to terminate. This option is only enabled when
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termination analysis is enabled. (See Section 9.7 [Termination analysis options],
page 109 for further details).

--no-warn-known-bad-format-calls
Do not warn about calls to string.format or io.format that the compiler knows
for sure contain mismatches between the format string and the supplied values.

--no-warn-only-one-format-string-error
If a format string has more than one mismatch with the supplied values, gener-
ate a warning for all mismatches, not just the first. The later mismatches may
be avalanche errors caused by earlier mismatches.

--warn-unknown-format-calls
Warn about calls to string.format, io.format or stream.string_
writer.format for which the compiler cannot tell whether there are any
mismatches between the format string and the supplied values.

--no-warn-obsolete
Do not warn about calls to predicates or functions that have been marked as
obsolete.

-—inform-ite-instead-of-switch
Generate informational messages for if-then-elses that could be replaced by
switches.

--inform-incomplete-switch
Generate informational messages for switches that do not cover all the function
symbols that the switched-on variable could be bound to.

-—inform-incomplete-switch-threshold n
—inform-incomplete-switch-threshold <N> Have the --inform-incomplete-
switch option generate its messages only for switches that do cover at least n
percent of the function symbols that the switched-on variable could be bound
to.

--no-warn-unresolved-polymorphism
Do not warn about unresolved polymorphism.

--warn-suspicious-foreign-procs
Warn about possible errors in the bodies of foreign procedures. When enabled,
the compiler attempts to determine whether the success indicator for a foreign
procedure is correctly set, and whether the foreign procedure body contains
operations that are not allowed (for example, return statements in a C foreign
procedure). Note that since the compiler’s ability to parse foreign language
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code is limited, some warnings reported by this option may be spurious, and
some actual errors may not be detected at all.

--warn-suspicious-foreign-code
Warn about possible errors in the bodies of foreign code pragmas. Note that
since the compiler’s ability to parse foreign language code is limited, some
warnings reported by this option may be spurious, and some actual errors may
not be detected at all.

--no-warn-state-var-shadowing
Do not warn about one state variable shadowing another.

--no-warn-unneeded-mode-specific-clause
Do not warn about clauses that needlessly specify the modes of their arguments.

--no-warn-suspected-occurs-check-failure
Do not warn about code that looks like it unifies a variable with a term that
contains that same variable. Such code cannot succeed because it fails what is
called the ‘occurs check’.

--warn-potentially-ambiguous-pragma
Generate warnings for pragmas that do not specify whether they are for a
predicate or a function.

--warn-ambiguous-pragma
Generate warnings for pragmas that do not specify whether they are for a
predicate or a function, when there is both a predicate and a function with the
given name and arity.

--no-inform-inferred
Do not generate messages about inferred types or modes.

--no-inform-inferred-types
Do not generate messages about inferred types.

-—-no-inform-inferred-modes
Do not generate messages about inferred modes.

--inform-suboptimal-packing
Generate messages if the arguments of a data constructor could be packed more
tightly if they were reordered.

-—no-warn-redundant-coerce
Do not warn about redundant type conversions, i.e. when the type of a ‘coerce’
expression is the same as the argument type.
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--warn-can-fail-function
Warn about functions that can fail.

--warn-unsorted-import-block

--warn-unsorted-import-blocks
Warn about two import and/or use declarations on the same line, or if a se-
quence of such declarations on consecutive lines are not sorted on module name.

9.3 Verbosity options

-V
--verbose
Output progress messages at each stage in the compilation.

-V
--very-verbose
Output very verbose progress messages.

-E

--verbose-error-messages
Explain error messages. Asks the compiler to give you a more detailed expla-
nation of any errors it finds in your program.

--no-verbose-make
Disable messages about the progress of builds using the ‘--make’ option.

--verbose-commands
Output each external command before it is run. Note that some commands
will only be printed with ‘--verbose’.

--verbose-recompilation
When using ‘--smart-recompilation’, output messages explaining why a
module needs to be recompiled.

--find-all-recompilation-reasons
Find all the reasons why a module needs to be recompiled, not just the first.
Implies ‘~-verbose-recompilation’.

--output-compile-error-lines n

--no-output-compile-error-lines
With ‘--make’, output the first n lines of the ‘. err’ file after compiling a module
(default: 100). Specifying —no-output-compile-error-lines removes the limit.

--report-cmd-line-args
Report the command line arguments.
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--report-cmd-line-args-in-doterr
Report the command line arguments for compilations whose output mmake
normally redirects to a ‘.err’ file.

-S

--statistics
Output messages about the compiler’s time/space usage. At the moment this
option implies ‘--no-trad-passes’, so you get information at the boundaries
between phases of the compiler.

—--proc-size-statistics filename
Append information about the size of each procedure in the module in terms
of goals and variables to the end of the named file.

-—limit-error-contexts filename:minlinel-maxlinel,minline2-maxline2

Print errors and warnings for the named file only when their line number is in
one of the specified ranges. The minimum or maximum line number in each
range may be omitted, in which case the range has no lower or upper bound
respectively. Multiple ‘--limit-error-context’ options accumulate. If more
than one ‘--limit-error-context’ option is given for the same file, only the
last one will have an effect. If the file name and colon are missing, the limit
will apply to all files.

—--color-scheme ColorScheme

—--colour-scheme ColorScheme
Specify the color scheme to use for diagnostics, if the use of color in diagnostics
is enabled. For information about how the compiler uses colors in diagnostic
messages, and about the syntax of color scheme specifications, please see the
Section 11.3 [Color schemes], page 147 section for the details.

--no-color-diagnostics

--no-colour-diagnostics
Disable the use of colors in diagnostic messages. Please see Section 11.4 [En-
abling the use of color], page 149 for the details.

-N
--debug-modes
Output debugging traces of the mode checking.

--debug-modes-verbose
Output detailed debugging traces of the mode checking.

--debug-modes-pred-id predid
With ‘--debug-modes’, restrict the debugging traces to the mode checking of
the predicate or function with the specified pred id.
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--debug-det
--debug-determinism
Output detailed debugging traces of determinism analysis.

--debug-opt
Output detailed debugging traces of the optimization process.

--debug-opt-pred-id predid
Output detailed debugging traces of the optimization process only for the pred-
icate/function with the specified pred id. May be given more than once.

—--debug-opt-pred-name name
Output detailed debugging traces of the optimization process only for the pred-
icate/function with the specified name. May be given more than once.

--debug-pd
Output detailed debugging traces of the partial deduction and deforestation
process.

--debug-liveness <n>
Output detailed debugging traces of the liveness analysis of the predicate with
the given predicate id.

--debug-make
Output detailed debugging traces of the ‘--make’ option.

--debug-intermodule-analysis
Output detailed debugging traces of the ‘-—intermodule-analysis’ option.

--debug-indirect-reuse
Output detailed debugging traces of the indirect reuse pass of
‘--structure-reuse’ option.

--debug-type-rep
Output debugging traces of type representation choices.

9.4 Output options

These options are mutually exclusive. If more than one of these options is specified, only
the first in this list will apply. If none of these options are specified, the default action is to
compile and link the modules named on the command line to produce an executable.

-f
-—generate-source-file-mapping

Output the module name to file name mapping for the list of source files given
as non-option arguments to ‘mmc’ to ‘Mercury.modules’. This must be done
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before ‘mmc --generate-dependencies’ if there are any modules for which the
file name does not match the module name. If there are no such modules the
mapping need not be generated.

-M

--generate-dependencies
Output “Make”-style dependencies for the module and all of its dependencies
to ‘module.dep’, ‘module.dv’ and the relevant ‘.d’ files

--generate-dependency-file
Output ‘Make’-style dependencies for the module to ‘module.d’.

—--generate-module-order
Output the strongly connected components of the module depen-
dency graph in top-down order to ‘module.order’. Effective only if
‘-—generate-dependencies’ is also specified.

--generate-standalone-interface basename
Output a stand-alone interface. basename is used as the basename of any
files generated for the stand-alone interface. (See see Chapter 14 [Stand-alone
interfaces|, page 151 for further details.)

--generate-mmc-deps

--generate-mmc-make-module-dependencies
Generate dependencies for use by ‘mmc --make’ even when using Mmake. This
is recommended when building a library for installation.

-i

—--make-int

--make-interface
Write the module interface to ‘module.int’. Also write the short interface to
‘module.int?2’.

--make-short-int
--make-short-interface
Write the unqualified version of the short interface to ‘module.int3’.

--make-priv-int

--make-private-interface
Write the module’s private interface (used for compiling nested submodules) to
‘module.int0’.

--make-opt-int
--make-optimization-interface
Write information used for inter-module optimization to ‘module.opt’.
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--make-trans-opt
--make-transitive-optimization-interface

Write the ‘module.trans_opt’ file. This file is used to store information used
for inter-module optimization. The information is read in when the compiler
is invoked with the ‘--transitive-intermodule-optimization’ option. The
file is called the “transitive” optimization interface file because a ‘.trans_opt’
file may depend on other ‘.trans_opt’ and ‘.opt’ files. In contrast, a ‘.opt’
file can only hold information derived directly from the corresponding ‘.m’ file.

—--make-xml-documentation

-P

Output an XML representation of all the declarations in the module into the
file ‘module.xml’. This XML file can then be transformed via a XSL transform
into another documentation format.

--pretty-print
-—convert-to-mercury

Convert to Mercury. Output to file ‘module.ugly’. This option acts as a
Mercury ugly-printer. (It would be a pretty-printer, except that comments are
stripped and nested if-then-elses are indented too much — so the result is rather

ugly.)

--typecheck-only

-e

Just check the syntax and type-correctness of the code. Don’t invoke the mode
analysis and later passes of the compiler. When converting Prolog code to
Mercury, it can sometimes be useful to get the types right first and worry
about modes second; this option supports that approach.

—--errorcheck-only

-C

Check the module for errors, but do not generate any code.

--target-code-only

-C

Generate target code (i.e. C in ‘module.c’, C# in ‘module.cs’, or Java in
‘module.java’, but not object code.

--compile-only

Generate C code in ‘module.c’ and object code in ‘module.o’ but do not at-
tempt to link the named modules.

--output-grade-string

Compute the canonical string representing the currently selected grade, and
print it on the standard output.
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—--output-link-command
Print to standard output the command used to link executables.

--output-shared-1lib-link-command
Print to standard output the command used to link shared libraries.

--output-stdlib-grades
Print to standard output the list of compilation grades in which the Mercury
standard library is available with this compiler.

—--output-libgrades
Print to standard output the list of compilation grades in which a library to be
installed should be built.

—-—output-cc
Print to standard output the command used to invoke the C compiler.

--output-cc-type
—--output-c-compiler-type
Print the C compiler type to the standard output.

--output-cflags
Print to standard output the flags with which the C compiler will be invoked.

—--output-csharp-compiler
Print to standard output the command used to invoke the C# compiler.

—--output-csharp-compiler-type
Print the C# compiler type to the standard output.

--output-library-link-flags
Print to standard output the flags that are passed to the linker in order to link
against the current set of libraries. This includes the standard library, as well
as any other libraries specified via the ‘--ml’ option.

--output-grade-defines
Print to standard output the flags that are passed to the C compiler to define
the macros whose values specify the compilation grade.

--output-c-include-dir-flags

--output-c-include-directory-flags
Print to standard output the flags that are passed to the C compiler to specify
which directories to search for C header files. This includes the C header files
from the standard library.



Chapter 9: Invocation 103

--output-target-arch
Print the target architecture to the standard output.

--output-class-dir

--output-class-directory

--output-java-class-dir

--output-java-class-directory
Print to standard output the name of the directory in which generated Java
class files will be placed.

--output-stdlib-modules
Print to standard output the names of the modules in the Mercury standard
library.

9.5 Auxiliary output options

--smart-recompilation
When compiling, write program dependency information to be used to avoid
unnecessary recompilations if an imported module’s interface changes in a way
which does not invalidate the compiled code. ‘--smart-recompilation’ does
not yet work with ‘--intermodule-optimization’.

-—trace-level level
Generate code that includes the specified level of execution tracing. The level
should be one of ‘none’, ‘shallow’, ‘deep’, ‘rep’ and ‘default’. See Chapter 7
[Debugging], page 16.

--trace-optimized
Do not disable optimizations that can change the trace.

--profile-optimized
Do not disable optimizations that can distort deep profiles.

--no-delay-death
When the trace level is ‘deep’, the compiler normally preserves the values of
variables as long as possible, even beyond the point of their last use, in order
to make them accessible from as many debugger events as possible. However,
it will not do this if this option is given.

--delay-death-max-vars N
Delay the deaths of variables only when the number of variables in the procedure
is no more than N. The default value is 1000.

--stack-trace-higher-order
Enable stack traces through predicates and functions with higher-order argu-
ments, even if stack tracing is not supported in general.

—-—auto-comments
Output comments in the generated target language file. This is primarily useful
for trying to understand how the generated target language code relates to the
source code, e.g. in order to debug the compiler. The code may be easier to
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understand if you also use the ‘~-no-11ds-optimize’ or ‘~-no-mlds-optimize’
options.

-n-
--no-line-numbers
Put source line numbers in the generated code. The generated code may be in
C (the usual case) or in Mercury (with ‘--convert-to-mercury’).

--no-line-numbers—-around-foreign_code
Do not put source line numbers into the generated code around inclusions of
foreign language code.

--line-numbers-for-c-headers
Put source line numbers in the generated C header files. This can make it
easier to track down any problems with C code in foreign_decl pragmas, but
may cause unnecessary recompilations of other modules if any of these line
numbers changes (e.g. because the location of a predicate declaration changes
in the Mercury source file).

--max-error—-line-width N
Set the maximum width of an error message line to N characters
(unless a long single word forces the line over this limit).  Specifying
‘-—no-max-error-line-width’ removes the limit.

--reverse-error-order
Print error messages in descending order of their line numbers, instead of the
usual ascending order. This is useful if you want to work on the last errors in
a file first.

--show-defns

--show-definitions
Write out a list of the types, insts, modes, predicates, functions, typeclasses
and instances defined in the module to ‘module.defns’.

—--show-defn-line-counts

--show-definition-line-counts
Write out a list of the predicates and functions defined in the module, together
with the names of the files containing them and their approximate line counts,
to ‘module.defn_line_counts’. The list will be ordered on the names and
arities of the predicates and functions.

-—show-defn-extents

--show-definition-extents
Write out a list of the predicates and functions defined in the module,
together with the approximate line numbers of their first and last lines, to
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‘module.defn_extents’. The list will be ordered on the starting line numbers
of the predicates and functions.

-—show-local-call-tree

Construct the local call tree of the predicates and functions defined in the
module. Each node of this tree is a local predicate or function, and each node
has edges linking it to the nodes of the other local predicates and functions it
directly refers to. Write out to ‘module.local_call_tree’ a list of these nodes.
Put these nodes into the order in which they are encountered by a depth-first
left-to-right traversal of the bodies (as reordered by mode analysis), of the first
procedure of each predicate or function, starting the traversal at the exported
predicates and/or functions of the module. List the callees of each node in the
same order.

Write a flattened form of this call tree, containing just the predicates and func-
tions in the same traversal order, to ‘module.local_call_tree_order’.

Construct another call tree of the predicates and functions defined in the module
in which each entry lists not just the local predicates/functions directly referred
to, but all directly or indirectly referenced predicates/functions, whether or not
they are defined in the current module. The one restriction is that we consider
only references that occur in the body of the current module. Write out this
tree to ‘module.local_call_full’.

--show-local-type-representations
Write out information about the representations of all types defined in the
module being compiled to ‘module.type_repns’.

--show-all-type-representations
Write out information about the representations of all types visible in the mod-
ule being compiled to ‘module.type_repns’.

--show-dependency-graph
Write out the dependency graph to ‘module.dependency_graph’.

--show-pred-movability name
Write out a short report on the effect of moving the code of the named predicate
or function (or the named several predicates and/or functions, if the option is
given several times) to a new module. This includes listing the other predicates
and/or functions that would have to be moved with them, and whether the
move would cause unwanted coupling between the new module and the old.

—--imports-graph
Write out the imports graph to ‘module.imports_graph’. The imports
graph contains the directed graph module A imports module B. The
resulting file can be processed by the graphviz tools. Effective only if
‘--generate-dependencies’ is also specified.
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-d stage

—--dump-hlds stage
Dump the HLDS (a high-level intermediate representation) after the specified
stage number or stage name to ‘module.hlds_dump.num-name’. Stage numbers
range from 1 to 599; not all stage numbers are valid. If a stage number is
followed by a plus sign, all stages after the given stage will be dumped as well.
The special stage name ‘all’ causes the dumping of all stages. Multiple dump
options accumulate.

—--dump-hlds-options options
With ‘--dump-hlds’, include extra detail in the dump. Each type of detail is
included in the dump if its corresponding letter occurs in the options argument.
These details are:

‘a’ argument modes in unifications

‘v’ builtin flags on calls

‘c’ contexts of goals and types

‘d’ determinism of goals

‘e’ created, removed, carried, allocated into, and used regions
‘£ follow_vars sets of goals

‘g’ goal feature lists

‘i variables whose instantiation changes

‘v pred/mode ids and unify contexts of called predicates
‘m’ mode information about clauses

‘n’ nonlocal variables of goals

pre-birth, post-birth, pre-death and post-death sets of goals

‘r’ resume points of goals

[)

S store maps of goals

‘t’ results of termination analysis

‘o’ unification categories and other implementation details of unifica-
tions

‘v’ variable numbers in variable names

‘x’ predicates

‘y’ structured insts in the arg-modes of unification

‘z’ purity annotations on impure and semipure goals

‘N argument passing information

‘B’ mode constraint information

‘c’ clause information
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instmap deltas of goals (meaningful only with ‘i’)

deep profiling information

compile-time garbage collection information

imported predicates

restrict the output of type table entries to local types only
mode and inst information

dependency and dependency ordering information

goal id and path information

live forward use, live backward use and reuse possibilities
information about structure sharing

type and typeclass information

unify and compare predicates

constant structures

print insts using indentation to explain structure

information about globals structs representing call and answer ta-
bles

--dump-hlds-pred-id predid
With ‘--dump-hlds’, restrict the output to the HLDS of the predicate or func-
tion with the specified pred id. May be given more than once.

—--dump-hlds-pred-name name
With ‘--dump-hlds’, restrict the output to the HLDS of the predicate or func-
tion with the specified name. May be given more than once.

--dump-hlds-inst-limit N
Dump at most N insts in each inst table.

--dump-hlds-inst-size-1limit N
Dump insts in an inst table only if their size does not exceed N.

-—dump-hlds-file-suffix
Append the given suffix to the names of the files created by the ‘--dump-hlds’

option.

-—dump-same-hlds
Create a file for a HLDS stage even if the file notes only that this stage is
identical to the previously dumped HLDS stage.
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--dump-mlds stage

Dump the MLDS (a C-like intermediate representation) after the specified
stage number or stage name. The MLDS is converted to a C source
file/header file pair, which is dumped to ‘module.c_dump.num-name’ and
‘module.mih_dump.num-name’. Stage numbers range from 1 to 99; not all
stage numbers are valid. The special stage name ‘all’ causes the dumping
of all stages. Multiple dump options accumulate. This option works only in
MLDS grades that target C.

—--dump-mlds-pred-name name
Dump the MLDS (medium level intermediate representation) of the predicate
or function with the specified name at the stages specified by the ‘~-dump-mlds’
option. The dump file will consist of the predicates and functions named by all
the occurrences of this option (there may be more than one), and nothing else.

—--verbose-dump-mlds stage
Dump the internal compiler representation of the MLDS, after the specified
stage number or stage name, to ‘module.mlds_dump.num-name’. This option
works in all MLDS grades.

--mode-constraints
Perform constraint based mode analysis on the given modules. At the moment,
the only effect of this is to include more information in HLDS dumps, to allow
the constraint based mode analysis algorithm to be debugged.

--simple-mode-constraints
Ask for the simplified variant of constraint based mode analysis, in which there
is only one constraint variable per program variable, rather than one constraint
variable per node in the inst graph of a program variable. This option is ignored
unless ‘--mode-constraints’ is also given.

-—benchmark-modes
Output information about the performance of the constraint based mode anal-
ysis algorithm.

--benchmark-modes-repeat num
Specifies the number of times the mode analysis algorithm should run. More
repetitions may smooth out fluctuations due to background load or clock gran-
ularity. This option is ignored unless ‘~-benchmark-modes’ is also given.

9.6 Language semantics options
See the Mercury language reference manual for detailed explanations of these options.

--no-reorder-conj
Execute conjunctions left-to-right except where the modes imply that reordering
is unavoidable.
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--no-reorder-disj
Execute disjunctions strictly left-to-right.

--no-fully-strict
Allow infinite loops or goals with determinism erroneous to be optimised away.

--allow-stubs
Allow procedures to have no clauses. Any calls to such procedures will raise
an exception at run-time. This option is sometimes useful during program
development. (See also the documentation for the ‘--warn-stubs’ option in
Section 9.2 [Warning options|, page 90.)

--infer-all
An abbreviation for ‘--infer-types --infer-modes --infer-det’.

--infer-types
If there is no type declaration for a predicate or function, try to infer the type,
rather than just reporting an error.

-—infer-modes
If there is no mode declaration for a predicate, try to infer the modes, rather
than just reporting an error.

--no-infer-det

-—-no-infer-determinism
If there is no determinism declaration for a procedure, don’t try to infer the
determinism, just report an error.

--type-inference-iteration-limit n
Perform at most n passes of type inference (default: 60).

--mode-inference-iteration-limit n
Perform at most n passes of mode inference (default: 30).

9.7 Termination analysis options

For detailed explanations, see the “Termination analysis” section of the “Implementation-
dependent extensions” chapter in the Mercury Language Reference Manual.

-—enable-term

—--enable-termination
Enable termination analysis.  Termination analysis analyses each mode
of each predicate to see whether it terminates. The ‘terminates’,
‘does_not_terminate’ and ‘check_termination’ pragmas have no
effect unless termination analysis is enabled. =~ When using termination,
‘~—intermodule-optimization’ should be enabled, as it greatly improves the
accuracy of the analysis.
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--chk-term

—--check-term

-—check-termination
Enable termination analysis, and emit warnings for some predicates or functions
that cannot be proved to terminate. In many cases in which the compiler is
unable to prove termination, the problem is either a lack of information about
the termination properties of other predicates, or the fact that the program used
language constructs (such as higher-order calls) which cannot be analysed. In
these cases the compiler does not emit a warning of non-termination, as it is
likely to be spurious.

-—verb-chk-term

--verb-check-term

—--verbose-check-termination
Enable termination analysis, and emit warnings for all predicates or functions
that cannot be proved to terminate.

--term-single-arg limit

--termination-single-argument-analysis 1imit
When performing termination analysis, try analyzing recursion on single argu-
ments in strongly connected components of the call graph that have up to limit
procedures. Setting this limit to zero disables single argument analysis.

-—termination-norm norm
The norm defines how termination analysis measures the size of a memory cell.
The ‘simple’ norm says that size is always one. The ‘total’ norm says that it
is the number of words in the cell. The ‘num-data-elems’ norm says that it is
the number of words in the cell that contain something other than pointers to
cells of the same type.

-—term-err-limit limit
-—termination-error-limit l1imit
Print at most n reasons for any single termination error.

-—-term-path-limit limit
--termination-path-limit Iimit
Perform termination analysis only on predicates with at most n paths.

9.8 Compilation model options

The following compilation options affect the generated code in such a way that the entire
program must be compiled with the same setting of these options, and it must be linked to
a version of the Mercury standard library which has been compiled with the same setting.
(Attempting to link object files compiled with different settings of these options will gener-
ally result in an error at link time, typically of the form ‘undefined symbol MR_grade_...’
or ‘symbol MR_runtime_grade multiply defined’.)
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The options below must be passed to ‘mgnuc’, ‘c2init’ and ‘ml’ as well as to ‘mmc’. If
you are using Mmake, then you should specify these options in the ‘GRADEFLAGS’ variable
rather than specifying them in ‘MCFLAGS’, ‘MGNUCFLAGS’ and ‘MLFLAGS’.

9.8.1 Grades and grade components

-s grade

--grade grade
Select the compilation model. The grade should be a ‘.’ separated list in which
the first element is a ‘base grade’, and each following element (if any) is a
‘grade modifier’.

The base grade specifies what target language to compile the Mercury program
to, and if the compiler can do this in several different ways, selects one of those
ways. The available base grades are the following.

‘hlc’ This base grade calls for generating idiomatic C, which we call
high-level C.

‘none’, ‘reg’, and ‘asm_fast’

These base grades call for generating assembly-like C code, which
we call low-level C. ‘none’ calls for generating standard C without
using any GNU C extensions. ‘reg’ and ‘asm_fast’ both call for the
use of GNU C’s extension for storing global variables in registers,
while ‘asm_fast’ also calls for the use of two GNU C extensions
that together allow direct gotos to labels in other functions, even
in other modules. In general, the more GNU C extensions are used,
the faster the program will be, but some platforms, compilers or
compiler versions do not support specific extensions.

‘csharp’  This base grade calls for generating C#.
‘java’ This base grade calls for generating Java.

The default base grade is system dependent, but will be either ‘hlc’ or
‘asm_fast’, as these are the two fastest.

The grade modifiers may be given in any order. Each grade modifier sets one
or more compilation model options. The available options each belong to a set
of mutually exclusive alternatives governing a single aspect of the compilation
model. The set of aspects and their alternatives are as follows. Note that not
all grade modifiers are applicable to all grades (most apply only when targeting
C), and not all grade modifiers are compatible with each other.

garbage collection
The default is no garbage collection beyond what the target lan-
guage provides. C+# and Java have their own builtin garbage col-
lectors, but C does not. Since garbage collection is essential for all
programs other than those with very short runtimes, base grades
that target C are usually followed by the ‘. gc’ grade modifier, which
calls for the use of the Boehm-Demers-Weiser conservative collector
for C.
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The default is no profiling. The grade modifier ‘.prof’ calls for
gprof-style profiling; the grade modifier ‘.memprof’ calls for profil-
ing of memory usage; while the grade modifier ‘. profdeep’ calls for
deep profiling. See Chapter 8 [Profiling], page 81 for an explanation
of the differences between these forms of profiling, all of which are
available only when targeting C.

The default is no trailing. Applications that need trailing should
specify the grade modifier ‘.tr’. Trailing is available only when
targeting C.

(A trail is a data structure that records changes to a mutable data
store during normal execution so that each of those changes can
be unwound (undone) when execution backtracks to the point in
time before it was made. Mercury normally needs a trail only when
executing programs that use constraint solvers. While the act of
posting a constraint in such a program is a declarative action, its
implementation requires updating a constraint store.)

floating point precision

stack size

By default when targeting C, the Mercury ‘float’ type is imple-
mented as an IEEE 754 double-precision floating point number,
which occupies 64 bits of space. On platforms whose word size is
32 bits, users whose programs do not require double precision may
improve memory consumption and speed by specifying the grade
modifier ‘. spf’ (short for single-precision float), which calls for im-
plementing all Mercury floats as IEEE 754 single-precision floating
point numbers. Note that on 64 bit platforms, using single-precision
floats definitely will not improve memory consumption, and will
probably not improve speed. On the other hand, it may simplify
the use of C APIs that exclusively use single precision floats.

For target languages other than C, the Mercury ‘float’ type is
always implemented as a double-precision floating point number,
and the ‘.spf’ modifier is not supported.

When generating low-level C, Mercury implements its own stacks
(two of them). The default is to make each stack a fixed size (usu-
ally a relatively large size, though the size of each stack can be
controlled using runtime options). We make the page(s) at the
tops of the stacks inaccessible, so that a stack overflow, instead of
accessing and overwriting memory effectively randomly, causes the
operating system to send a signal to the program. If not caught
and handled, this signal will abort the program, minimizing the
damage.

However, for programs for which this is not acceptable, users can
specify the ‘.stseg’ grade component. This calls for each stack
to be composed of small memory segments chained together in a
list. When there is no room in the current segment for a new
stack frame, we simply allocate a new segment and add it to the
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list. This approach has higher overhead, since calls to, and returns
from, procedures must execute more code, but it avoids imposing
any limit on stack size other than the size of available memory.

When targeting anything other than low-level C, the stack is always
managed by the implementation of the target language, so for them,
the ‘. stseg’ modifier is neither relevant nor supported.

The default is to generate executables that do not support de-
bugging. However, when generating low-level C code, specifying
one of the grade modifiers ‘.debug’ and ‘.decldebug’ will cause
the compiler to generate executables that can be debugged us-
ing the Mercury debugger ‘mdb’. The difference between them is
that the declarative debugging aspects of ‘mdb’ will work only with
‘.decldebug’. The price of this is that ‘.decldebug’ results in
significantly larger executable files.

The default is whatever thread support is provided by the target
language. When targeting C, thread support can be enabled by
specifying the grade modifier ‘.par’. When targeting low-level C,
this also enables the use of the parallel conjunction operator ‘&’.
Since Mercury implements parallel conjunctions only in low-level C
grades with the ‘.par’ grade modifier, in every other situation, the
compiler silently converts every occurrence of ‘&’ to a comma, the
usual sequential conjunctions operator.

thread profiling

In low-level C grades with the grade modifier ‘.par’, users can en-
able support for ThreadScope-style thread profiling by also speci-
fying the grade module ‘.threadscope’. The default is no support
for thread profiling. Note that form of profiling is experimental,
and it is not currently supported.

minimal model tabling

The default is no support for minimal model evaluation. When
targeting low-level C, users can specify the grade modifier ‘.mm’,
which enables support for minimal model tabled evaluation of pro-
cedures. The grade component ‘.mmsc’ is a synonym for ‘.mm’,
standing for minimal model via stack copying, since the standard
implementation works by copying stack segments. (The synonym
exists because Mercury also has another implementation of mini-
mal model tabling. This other implementation, which is incomplete
and was only ever useful for experiments, is based on a completely

different implementation technique.)

The default grade is system-dependent; it is chosen at installation time by
‘configure’, the auto-configuration script, but can be overridden if desired
with the environment variable MERCURY_DEFAULT_GRADE. On any given
particular installation, the Mercury runtime system and Mercury standard
library will be installed in only a subset of the possible grades; you can
find out which grades these are by invoking the Mercury compiler with the
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‘-—output-stdlib-grades’ option. Attempting to use a grade which has not
been installed will result in an error at link time. (The error message will
typically be something like ‘1d: can’t find library for -lmercury’.)

The tables below show the options that are selected by each base grade and
grade modifier; they are followed by descriptions of those options.

Grade Options implied.
‘hlc’ --target ¢ —-high-level-code.
‘none’ --target ¢ ——no-gcc-global-registers —-no-gcc-nonlocal-

gotos ——no-asm-labels.

‘reg’ --target ¢ --gcc-global-registers ——-no-gcc-nonlocal-

gotos ——no-asm-labels.

‘asm_fast’
--target ¢ --gcc-global-registers —-gcc-nonlocal-gotos
--asm-labels.
‘csharp’ --target csharp --high-level-code.
‘java’ --target java --high-level-code.
‘.gc’ --gc boehm.
‘.prof’ —--profiling.
‘.memprof’
--memory-profiling.
‘.profdeep’
—-—-deep-profiling.
‘otr’ --use-trail.
‘. spf’ --single-prec-float
‘.stseg’ --stack-segments
‘.debug’ --debug.
‘.decldebug’
--decl-debug.
‘.par’ —--parallel.
‘.threadscope’
--threadscope.

9.8.2 Target options

--target c (grades: none, reg, asm_fast, hlc)

--csharp, —-target csharp (grades: csharp)

--java, --target java (grades: java)
Specify the target language used for compilation: C, C# or Java. C means
ANSI/ISO C, optionally with GNU C extensions (see below). Targets other
than C imply ‘--high-level-code’.
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—--compile-to-c

—--compile-to-C
An abbreviation for ‘--target ¢ --target-code-only’. Generate C code in
‘module.c’, but do not invoke the C compiler to generate object code.

¢

--csharp-only
An abbreviation for ‘--target csharp —-target-code-only’. Generate C#
code in ‘module.cs’, but do not invoke the C# compiler to produce CIL byte-
code.

[4

--java-only
An abbreviation for ‘--target java --target-code-only’. Generate Java
code in ‘module. java’, but do not invoke the Java compiler to produce Java
bytecode.

4

9.8.3 LLDS back-end compilation model options

--gcc-global-registers (grades: reg, asm_fast)

--no-gcc-global-registers (grades: none)
Specify whether or not to use GNU C’s global register variables extension. This
option is ignored if the ‘-~high-level-code’ option is enabled.

--gcc-non-local-gotos (grades: asm_fast)

--no-gcc-non-local-gotos (grades: none, reg)
Specify whether or not to use GNU C’s “labels as values” extension. This
option is ignored if the ‘-~high-level-code’ option is enabled.

--asm-labels (grades: asm_fast)

--no-asm-labels (grades: none, reg)
Specify whether or not to use GNU C’s asm extensions for inline assembler
labels. This option is ignored if the ‘-~high-level-code’ option is enabled.

--stack-segments (grades: any grade containing ‘.stseg’)
Specify whether use dynamically sized stacks that are composed of small seg-
ments. This can help to avoid stack exhaustion at the cost of increased execution
time. This option is not supported by the ‘-~high-level-code’ back-ends.

9.8.4 MLDS back-end compilation model option

-H, --high-level-code (grades: hlc, csharp, java)
Use an alternative back-end that generates high-level code rather than the very
low-level code that is generated by our original back-end.

--c-debug-grade (grades: hlc)
Require that all modules in the program be compiled to object code in a way
that allows the program executable to be debuggable with debuggers for C, such
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as gdb. This option is intended mainly for the developers of Mercury, though
it can also help to debug C code included in Mercury programs.

9.8.5 Optional features compilation model options

--debug (grades: any grade containing ‘.debug’)
Enables the inclusion in the executable of code and data structures that allow
the program to be debugged with ‘mdb’ (see Chapter 7 [Debugging], page 16).
This option is only supported by the low-level C back-end.

--decl-debug (grades: any grade containing ‘.decldebug’)
Enables the inclusion in the executable of code and data structures that allow
subterm dependency tracking in the declarative debugger. This option is only
supported by the low-level C back-end.

--profiling, --time-profiling (grades: any grade containing ‘.prof’)
Enable time profiling. Insert profiling hooks in the generated code, and also out-
put some profiling information (the static call graph) to the file ‘module.prof’.
See Chapter 8 [Profiling], page 81. This option is only supported by the C
back-ends.

--memory-profiling (grades: any grade containing ‘.memprof’)
Enable memory profiling. Insert memory profiling hooks in the generated code,
and also output some profiling information (the static call graph) to the file
‘module.prof’. See Section 8.5 [Using mprof for profiling memory allocation],
page 86. See Section 8.6 [Using mprof for profiling memory retention], page 87.
This option is only supported by the C back-ends.

--deep-profiling (grades: any grade containing ‘.profdeep’)
Enable deep profiling by inserting the appropriate hooks in the generated code.
This option is only supported by the low-level C back-end.

--no-coverage-profiling
Disable coverage profiling. Coverage profiling is part of the deep profiler and
only used in deep profiling grades, it inserts coverage points that are used to
measure how execution moves through a procedure.

--profile-for-feedback
Enable options in the deep profiler that generate suitable profiles for use with
profile directed feedback analysis. Currently the only feedback analysis is used
for automatic parallelism. This option only effects programs built in deep pro-
filing grades.
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--experimental-complexity filename
Enable experimental complexity analysis for the predicates listed in
the given file. This option is supported for the C back-end, with
‘~—no-high-level-code’. For now, this option itself is for developers only.

--gc {none, boehm, automatic}

--garbage-collection {none, boehm, automatic}
Specify which method of garbage collection to use. Grades containing ‘csharp’
or ‘java’ use ‘--gc automatic’, grades containing ‘.gc’ use ‘--gc boehm’, other
grades use ‘--gc none’. ‘conservative’ or ‘boehm’ is Hans Boehm et al’s con-
servative garbage collector. ‘automatic’ means the target language provides it.
This is the case for the C# and Java back-ends, which always use the underlying
implementation’s garbage collector.

--use-trail (grades: any grade containing .tr’)
Enable use of a trail. This is necessary for interfacing with constraint solvers,
or for backtrackable destructive update. This option is only supported by the
C back-ends.

--parallel
In low-level C grades this enables support for parallel execution. Parallel ex-
ecution can be achieved by using either the parallel conjunction operator or
the concurrency support in the ‘thread’ module of the standard library. See
Section “Goals” in The Mercury Language Reference Manual, and See Section
“thread” in The Mercury Library Reference Manual.

In high-level C grades this enables support for concurrency, which is accessible
via the ‘thread’ module in the standard library. The runtime uses POSIX
threads to achieve this, therefore it may also support parallel execution of
threads.

The Java and C# grades support concurrency without this option. Parallel
execution may also be available depending on the target’s runtime.

--threadscope
Enable support for threadscope profiling. This enables runtime support for
profiling the parallel execution of programs, See Section 8.8 [Using threadscope],
page 89.

--maybe-thread-safe {yes, no}
Specify how to treat the ‘maybe_thread_safe’ foreign code attribute. ‘yes’
means that a foreign procedure with the ‘maybe_thread_safe’ option is treated
as thought is has a ‘thread_safe’ attribute. ‘no’ means that the foreign pro-
cedure is treated as though it has a ‘not_thread_safe’ attribute. The default
is ‘no’.
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--single-prec-float (grades: any grade containing ‘.spf’)
Use single precision floats so that, on 32-bit machines floating point values don’t
need to be boxed. Double precision floats are used by default. This option is
not supported for the C# or Java back-ends.

9.8.6 Developer compilation model options

Of the options listed below, the ‘--num-tag-bits’ option may be useful for cross-
compilation, but apart from that these options are all experimental and are intended
for use by developers of the Mercury implementation rather than by ordinary Mercury
programmers.

--num-ptag-bits n

--num-tag-bits n
(This option is not intended for general use.)
Use n primary tag bits. The default number of primary tag bits to use is
determined by the auto-configuration script; the only valid reason for overriding
this default is cross-compilation to an architecture where auto-configuration
would yield a different value.

--no-type-layout
(This option is not intended for general use.)
Don’t output base_type_layout structures or references to them. This option
will generate smaller executables, but will not allow the use of code that uses
the layout information (e.g. ‘functor’, ‘arg’). Using such code will result in
undefined behaviour at runtime. The C code also needs to be compiled with
‘~-DNO_TYPE_LAYQUT’.

9.9 Code generation options

--low-level-debug
Enables various low-level debugging stuff that was in the distant past used
to debug the Mercury compiler’s low-level code generation. This option is
not likely to be useful to anyone except the Mercury implementors. It causes
the generated code to become very big and very inefficient, and slows down
compilation a lot.

--no-trad-passes
The default ‘--trad-passes’ completely processes each predicate before go-
ing on to the next predicate. This option tells the compiler to complete each
phase of code generation on all predicates before going on the next phase on all
predicates.

--no-reclaim-heap-on-nondet-failure
Don’t reclaim heap on backtracking in nondet code.
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--no-reclaim-heap-on-semidet-failure
Don’t reclaim heap on backtracking in semidet code.

--no-reclaim-heap-on-failure
Combines the effect of the two options above.

--max-jump-table-size n
The maximum number of entries a jump table can have. The special value
0 indicates the table size is unlimited. This option can be useful to avoid
exceeding fixed limits imposed by some C compilers.

--fact-table-max-array-size size
Specify the maximum number of elements in a single ‘pragma fact_table’ data
array (default: 1024). The data for fact tables is placed into multiple C arrays,
each with a maximum size given by this option. The reason for doing this is
that most C compilers have trouble compiling very large arrays.

--fact-table-hash-percent-full percentage
Specify how full the ‘pragma fact_table’ hash tables should be allowed to get.
Given as an integer percentage (valid range: 1 to 100, default: 90). A lower
value means that the compiler will use larger tables, but there will generally be
less hash collisions, so it may result in faster lookups.

9.9.1 Code generation target options

The following options allow the Mercury compiler to optimize the generated C code based on
the characteristics of the expected target architecture. The default values of these options
will be whatever is appropriate for the host architecture that the Mercury compiler was
installed on, so normally there is no need to set these options manually. They might come
in handy if you are cross-compiling. But even when cross-compiling, it is probably not
worth bothering to set these unless efficiency is absolutely paramount.

--have-delay-slot
(This option is not intended for general use.)
Assume that branch instructions have a delay slot.

--num-real-r-regs n
(This option is not intended for general use.)
Assume rl up to rn are real general purpose registers.

--num-real-f-regs n
(This option is not intended for general use.)
Assume f1 up to fn are real floating point registers.

--num-real-r-temps n
(This option is not intended for general use.)
Assume that n non-float temporaries will fit into real machine registers.
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--num-real-f-temps n

(This option is not intended for general use.)
Assume that n float temporaries will fit into real machine registers.

9.10 Optimization options

9.10.1 Overall optimization options

-O0n

--opt-level n
--optimization-level n

Set optimization level to n. Optimization levels range from -1 to 6. Optimiza-
tion level -1 disables all optimizations, while optimization level 6 enables all
optimizations except for the cross-module optimizations listed below. Some
experimental optimizations (for example constraint propagation) are not be
enabled at any optimization level.

In general, there is a trade-off between compilation speed and the speed of the
generated code. When developing, you should normally use optimization level
0, which aims to minimize compilation time. It enables only those optimiza-
tions that in fact usually reduce compilation time. The default optimization
level is level 2, which delivers reasonably good optimization in reasonable time.
Optimization levels higher than that give better optimization, but take longer,
and are subject to the law of diminishing returns. The difference in the qual-
ity of the generated code between optimization level 5 and optimization level
6 is very small, but using level 6 may increase compilation time and memory
requirements dramatically.

Note that if you want the compiler to perform cross-module optimizations,
then you must enable them separately; the cross-module optimizations are not
enabled by any ‘-0’ level, because they affect the compilation process in ways
that require special treatment by ‘mmake’.

--opt-space
--optimize-space

Turn on optimizations that reduce code size and turn off optimizations that
significantly increase code size.

--intermod-opt
--intermodule-optimization

Perform inlining and higher-order specialization of the code for predicates or
functions imported from other modules.

--trans-intermod-opt
--transitive-intermodule-optimization

Use the information stored in ‘module.trans_opt’ files to make intermodule
optimizations. The ‘module.trans_opt’ files are different to the ‘module.opt’
files as ‘.trans_opt’ files may depend on other ‘.trans_opt’ files, whereas
each ‘.opt’ file may only depend on the corresponding ‘.m’ file. Note that
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‘-—transitive-intermodule-optimization’ does mnot work with ‘mmc
--make’.

--no-read-opt-files-transitively
Only read the inter-module optimization information for directly imported mod-
ules, not the transitive closure of the imports.

--use-opt-files
Perform inter-module optimization using any ‘.opt’ files which are already
built, e.g. those for the standard library, but do not build any others.

--use-trans-opt-files
Perform inter-module optimization using any ‘.trans_opt’ files which are al-
ready built, e.g. those for the standard library, but do not build any others.

--intermodule-analysis
Perform analyses such as termination analysis and unused argument elimination
across module boundaries. This option is not yet fully implemented.

--analysis-repeat n
The maximum number of times to repeat analyses of suboptimal modules with
‘~-intermodule-analyses’ (default: 0). This option only works with ‘mmc
--make’.

9.10.2 High-level (HLDS -> HLDS) optimization options

These optimizations are high-level transformations on our HLDS (high-level data structure).

--no-inlining
Disable all forms of inlining.

--no-inline-simple
Disable the inlining of simple procedures.

--no-inline-builtins
Generate builtins (e.g. arithmetic operators) as calls to out-of-line procedures.
This is done by default when debugging, as without this option the execution
of builtins is not traced.

--no-inline-single-use
Disable the inlining of procedures called only once.

--inline-compound-threshold threshold
Inline a procedure if its size (measured roughly in terms of the number of
connectives in its internal form), multiplied by the number of times it is called,
is below the given threshold.

--inline-simple-threshold threshold
Inline a procedure if its size is less than the given threshold.

--intermod-inline-simple-threshold threshold
Similar to —inline-simple-threshold, except used to determine which predicates
should be included in ‘.opt’ files. Note that changing this between writing the
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‘.opt’ file and compiling to C may cause link errors, and too high a value may
result in reduced performance.

-—inline-vars-threshold threshold
Don’t inline a call if it would result in a procedure containing more than thresh-
old variables. Procedures containing large numbers of variables can cause slow
compilation.

--inline-linear-tail-rec-sccs
Given a set of mutually recursive procedures (an SCC, or strongly connected
component, of the call graph) in which each procedure contains exactly tail call
to a procedure in the SCC, so that the tail recursive calls form a linear chain
through the SCC, inline the callee at every one of those mutually tail recursive
call sites. This converts mutual tail recursion into self tail recursion, which the
MLDS backend can turn into code that runs in constant stack space.

--loop-invariants
Optimize loop invariants by moving computations within a loop that are the
same on every iteration to the outside so they are only calculated once.

--no-common-struct
Disable optimization of common term structures.

--constraint-propagation
Enable the constraint propagation transformation, which attempts to transform
the code so that goals which can fail are executed as early as possible.

--local-constraint-propagation
Enable the constraint propagation transformation, but only rearrange goals
within each procedure. Specialized versions of procedures will not be created.

--no-follow-code
Don’t migrate builtin goals into branched goals.

--optimize-unused-args
Remove unused predicate arguments. The compiler will generate more efficient
code for polymorphic predicates.

--intermod-unused-args
Perform unused argument removal across module boundaries. This option im-
plies ‘--optimize-unused-args’ and ‘--intermodule-optimization’.

-—unneeded-code
Remove goals from computation paths where their outputs are not needed,
provided the language semantics options allow the deletion or movement of the
goal.
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—--unneeded-code-copy-limit limit
Gives the maximum number of places to which a goal may be copied when
removing it from computation paths on which its outputs are not needed. A
value of zero forbids goal movement and allows only goal deletion; a value of
one prevents any increase in the size of the code.

--optimize-higher-order
Specialize calls to higher-order predicates where the higher-order arguments are
known.

--type-specialization
Specialize calls to polymorphic predicates where the polymorphic types are
known.

--user-guided-type-specialization
Enable specialization of polymorphic predicates for which there are ‘pragma
type_spec’ declarations. See the “Type specialization” section in the “Prag-
mas” chapter of the Mercury Language Reference Manual for more details.

--higher-order-size-limit 1imit
Set the maximum goal size of specialized versions created by
‘-—optimize-higher-order’ and ‘--type-specialization’. Goal
size is measured as the number of calls, unifications and branched goals.

-—higher-order-arg-limit limit
Set the maximum size of higher-order arguments to be specialized by
‘—-—optimize-higher-order’ and ‘--type-specialization’.

--optimize-constant-propagation
Given calls to some frequently used library functions and predicates, mainly
those that do arithmetic, evaluate them at compile time, if all their input
arguments are constants.

--introduce-accumulators
Attempt to introduce accumulating variables into procedures, so as to make
the procedure tail recursive.

--optimize-constructor-last-call
Enable the optimization of “last” calls that are followed by constructor appli-
cation.

--optimize-dead-procs
Enable dead procedure elimination.
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--excess—assign
Remove excess assignment unifications.

--no-optimize-format-calls
Do not attempt to interpret the format string in calls to string.format and
related predicates at compile time; always leave this to be done at runtime.

--split-switch-arms
When a switch on a variable has an inner switch on that same variable inside
one of its arms, split up that arm of the outer switch along the same lines,
effectively inlining the inner switch.

--optimize-duplicate-calls
Optimize away multiple calls to a predicate with the same input arguments.

--delay-constructs
Reorder goals to move construction unifications after primitive goals that can
fail.

--optimize-saved-vars
Minimize the number of variables that have to be saved across calls.

--deforestation
Enable deforestation. Deforestation is a program transformation whose aim is
to avoid the construction of intermediate data structures and to avoid repeated
traversals over data structures within a conjunction.

--deforestation-depth-limit Iimit
Specify a depth limit to prevent infinite loops in the deforestation algorithm.
A value of -1 specifies no depth limit. The default is 4.

-—deforestation-vars-threshold threshold
Specify a rough limit on the number of variables in a procedure created by
deforestation. A value of -1 specifies no limit. The default is 200.

-—deforestation-size-threshold threshold
Specify a rough limit on the size of a goal to be optimized by deforestation. A
value of -1 specifies no limit. The default is 15.

--analyse-exceptions
Try to identify those procedures that cannot throw an exception. This infor-
mation can be used by some optimization passes.
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--analyse-trail-usage
Enable trail usage analysis. Identify those procedures that will not modify the
trail. This information is used to reduce the overhead of trailing.

--analyse-mm-tabling
Identify those goals that do not calls procedures that are evaluated using mini-
mal model tabling. This information is used to reduce the overhead of minimal
model tabling.

9.10.3 MLDS back-end (MLDS -> MLDS) optimization options

These optimizations are applied to the medium level intermediate code.

--no-mlds-optimize
Disable the MLDS -> MLDS optimization passes.

--no-mlds-peephole
Do not perform peephole optimization of the MLDS.

--no-optimize-tailcalls
Treat tailcalls as ordinary calls rather than optimizing by turning self-tailcalls
into loops.

--no-optimize-initializations
Leave initializations of local variables as assignment statements, rather than
converting such assignments statements into initializers.

-—eliminate-local-variables
Eliminate local variables with known values, where possible, by replacing oc-
currences of such variables with their values.

--no-generate-trail-ops-inline
Do not generate trailing operations inline, but instead insert calls to the versions
of these operations in the standard library.

9.10.4 Medium-level (HLDS -> LLDS) optimization options

These optimizations are applied during the process of generating low-level intermediate code
from our high-level data structure.

--no-static-ground-terms
Disable the optimization of constructing constant ground terms at compile time
and storing them as static constants. Note that auxiliary data structures cre-
ated by the compiler for purposes such as debugging will still be created as
static constants.

--no-smart-indexing
Generate switches as simple if-then-else chains; disable string hashing and in-
teger table-lookup indexing.
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--dense-switch-req-density percentage
The jump table generated for an atomic switch must have at least this percent-
age of full slots (default: 25).

--dense-switch-size size
The jump table generated for an atomic switch must have at least this many
entries (default: 4).

--lookup-switch-req-density percentage
The lookup tables generated for an atomic switch in which all the outputs are
constant terms must have at least this percentage of full slots (default: 25).

--lookup-switch-size size
The lookup tables generated for an atomic switch in which all the outputs are
constant terms must have at least this many entries (default: 4).

--string-trie-switch-size size
The trie generated for a string switch must have at least this many entries
(default: 16).

--string-hash-switch-size size
The hash table generated for a string switch must have at least this many entries
(default: 8).

--string-binary-switch-size size
The binary search table generated for a string switch must have at least this
many entries (default: 4).

--tag-switch-size size
The number of alternatives in a tag switch must be at least this number (default:

3).

-—try-switch-size size
The number of alternatives in a try-chain switch must be at least this number
(default: 3).

--binary-switch-size size
The number of alternatives in a binary search switch must be at least this
number (default: 4).

-—-no-use-atomic-cells
Don’t use the atomic variants of the Boehm gc allocator calls, even when this
would otherwise be possible.
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-—no-middle-rec
Disable the middle recursion optimization.

--no-simple-neg
Don’t generate simplified code for simple negations.

9.10.5 Low-level (LLDS -> LLDS) optimization options

These optimizations are transformations that are applied to our low-level intermediate code
before emitting C code.

--no-common-data
Disable optimization of common data structures.

--no-layout-common-data
Disable optimization of common subsequences in layout structures.

--no-llds-optimize
Disable the low-level optimization passes.

--no-optimize-peep
Disable local peephole optimizations.

--no-optimize-jumps
Disable elimination of jumps to jumps.

--no-optimize-full jumps
Disable elimination of jumps to ordinary code.

--pessimize-tailcalls
Disable the optimization of tailcalls.

—--checked-nondet-tailcalls
Convert nondet calls into tail calls whenever possible, even when this requires
a runtime check. This option tries to minimize stack consumption, possibly at
the expense of speed.

—--no-use-local-vars
Disable the transformation to use local variables in C code blocks wherever
possible.

--no-optimize-labels
Disable elimination of dead labels and code.

—--optimize-dups
Enable elimination of duplicate code within procedures.
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--optimize-proc—-dups
Enable elimination of duplicate procedures.

--no-optimize-frames
Disable stack frame optimizations.

--no-optimize-delay-slot
Disable branch delay slot optimizations.

--optimize-reassign
Optimize away assignments to locations that already hold the assigned value.

--optimize-repeat n
Iterate most optimizations at most n times (default: 3).

--layout-compression-limit n
Attempt to compress the layout structures used by the debugger only as long
as the arrays involved have at most n elements (default: 4000).

9.10.6 Output-level (LLDS -> C) optimization options

These optimizations are applied during the process of generating C intermediate code from
our low-level data structure.

--no-emit-c-loops
Use only gotos — don’t emit C loop constructs.

—--use-macro-for-redo-fail
Emit the fail or redo macro instead of a branch to the fail or redo code in the
runtime system.

—--procs—-per-c-function n
Don’t put the code for more than n Mercury procedures in a single C function.
The default value of n is one. Increasing n can produce slightly more efficient
code, but makes compilation slower. Setting n to the special value zero has
the effect of putting all the procedures in a single function, which produces the
most efficient code but tends to severely stress the C compiler.

--no-local-thread-engine-base
Do not copy the thread-local Mercury engine base address into local variables.
This option only affects low-level parallel grades not using the GNU C global
register variables extension.

9.11 Target code compilation options

If you are using Mmake, you need to pass these options to the target code compiler (e.g.
‘mgnuc’) rather than to ‘mmc’.
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-—target-debug
Enable debugging of the generated target code. If the target language is C, this
has the same effect as ‘--c-debug’ (see below). If the target language is C#,
this causes the Mercury compiler to pass ‘/debug’ to the C# compiler.

—--cc compiler—-name
Specify which C compiler to use.

—--c-include-directory dir

--c-include-dir dir
Append dir to the list of directories to be searched for C header files. Note
that if you want to override this list, rather than append to it, then you can
set the MERCURY_MC_ALL_C_INCL_DIRS environment variable to a sequence of
‘-—c-include-directory’ options.

--c-debug
Pass the ‘-g’ flag to the C compiler, to enable debugging of the generated C
code, and also disable stripping of C debugging information from the executable.
Since the relationship between Mercury code and the C code generated for it is
not always obvious, this option is not likely to be useful to anyone outside the
team of Mercury implementors, except maybe people debugging code that uses
Mercury’s C interface extensively.

--no-c-optimize
Don’t enable the C compiler’s optimizations.

--no-ansi-c
This option is deprecated and has no effect.

-—inline-alloc
Inline calls to ‘GC_malloc()’. This can improve performance a fair bit, but may
significantly increase code size. This option has no effect if ‘-~gc boehm’ is not
set or if the C compiler is not GNU C.

--cflags options

--cflag option
Specify options to be passed to the C compiler. ‘--cflag’ should be used for
single words which need to be quoted when passed to the shell.

--javac compiler-name
--java-compiler compiler-name
Specify which Java compiler to use. The default is ‘javac’.

--java-interpreter interpreter-name
Specify which Java interpreter to use. The default is ‘java’.
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--java-flags options

--java-flag option

--javac-flags options

--javac-flag option
Specify options to be passed to the Java compiler. ‘--java-flag’ should be
used for single words which need to be quoted when passed to the shell.

¢

--java-classpath dir
Set the classpath for the Java compiler and interpreter.

--java-runtime-flags options
--java-runtime-flag option

Specify options to be passed to the Java interpreter. ‘--java-runtime-flag’
should be used for single words which need to be quoted when passed to the
shell.

—--csharp-compiler compiler-name
Specify which C# compiler to use. The default is ‘csc’.

--csharp-flags options

--csharp-flag option
Specify options to be passed to the C# compiler. ‘--csharp-flag’ should be
used for single words which need to be quoted when passed to the shell.

--cil-interpreter interpreter-name
Specify the program that implements the Common Language Infrastructure
(CLI) execution environment, e.g. ‘mono’.

9.12 Link options

-o filename

—--output-file filename
Specify the name of the final executable. (The default executable name is the
same as the name of the first module on the command line, but without the
‘.m’ extension.) This option is ignored by ‘mmc --make’.

--1d-flags options

--1d-flags option
Specify options to be passed to the command invoked by ‘mmc’ to link an exe-
cutable. Use mmc -—output-link-command to find out which command is used.
‘--1d-flag’ should be used for single words which need to be quoted when
passed to the shell.
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--1d-libflags options

--1d-libflag option
Specify options to be passed to the command invoked by ‘mmc’ to link a shared
library. Use mmc --output-shared-1ib-1link-command to find out which com-
mand is used. ‘--1d-1libflag’ should be used for single words which need to
be quoted when passed to the shell.

-L directory
--library-directory directory
Append directory to the list of directories in which to search for libraries.

-R directory

--runtime-library-directory directory
Append directory to the list of directories in which to search for shared libraries
at runtime.

--no-default-runtime-library-directory
Do not add any directories to the runtime search path automatically.

—-—-shlib-linker-install-name-path directory
Specify the path where a shared library will be installed. This option is useful
on systems where the runtime search path is obtained from the shared library
and not via the -R option (such as Mac OS X).

-1 library
--library library
Link with the specified library.

--link-object file
Link with the specified object file or archive of object files.

--search-lib-files-dir directory

--search-library-files-directory directory
Search directory for Mercury library files have mnot yet been in-
stalled. Similar to adding directory using all of the ‘~-search-directory’,
‘-—intermod-directory’, ‘--library-directory’, ‘-—init-file-directory’,
and ‘--c-include-directory’ options, but does the right thing when
‘-—use-subdirs’ or ‘--use-grade-subdirs’ options are used.

--mld directory

--mercury-library-directory directory
Append directory to the list of directories to be searched for Mercury
libraries.  This will add ‘--search-directory’, ‘--library-directory’,
‘-—init-file-directory’ and ‘--c-include-directory’ options as needed.
See Section 6.2.2 [Using installed libraries with mmec —make], page 12.
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--ml library

—--mercury-library library
Link with the specified Mercury library. See Section 6.2.2 [Using installed
libraries with mmc —make], page 12.

--mercury-standard-library-directory directory
--mercury-stdlib-dir directory

Search  directory for the Mercury standard library. Implies
‘-—mercury-library-directory directory’ and ‘--mercury-configuration-directory
directory’.

--no-mercury-standard-library-directory
--no-mercury-stdlib-dir
Don’t use the Mercury standard library. Implies ‘--no-mercury-configuration-directory’.

--init-file-directory directory
Append directory to the list of directories to be searched for
‘c2init’.

4

.init’ files by

-—-init-file file
Append file to the list of ‘.init’ files to be passed to ‘c2init’.

--trace-init-file file
Append file to the list of ‘.init’ files to be passed to ‘c2init’ when tracing is
enabled.

--linkage {shared,static}
Specify whether to use shared or static linking for executables. Shared libraries
are always linked with ‘--linkage shared’.

--mercury-linkage {shared,static}
Specify whether to use shared or static linking when linking an executable with
Mercury libraries. Shared libraries are always linked with ‘--mercury-linkage
shared’.

--no-demangle
Don’t pipe link errors through the Mercury demangler.

--no-main
Don’t generate a C main() function. The user’s code must provide a main()
function.

--no-allow-undefined
Do not allow undefined symbols in shared libraries.
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--no-use-readline
Disable use of the readline library in the debugger.

--runtime-flags flags
Specify flags to pass to the Mercury runtime.

-—extra-initialization-functions

-—extra-inits
Search ‘. c’ files for extra initialization functions. (This may be necessary if the
C files contain hand-coded C code with ‘INIT’ comments, rather than containing
only C code that was automatically generated by the Mercury compiler.)

--link-executable-command command
Specify the command used to invoke the linker when linking an executable.

--link-shared-lib-command command
Specify the command used to invoke the linker when linking a shared library.

--no-strip
Do not strip executables.

--strip-executable-command command
Specify the command used to strip executables if no linker flag to do so is
available. This option has no effect on ‘ml’.

--strip-executable-shared-flags options
Specify options to pass to the strip executable command when linking against
Mercury shared libraries.

--stripe-executable-static-flags options
Specify options to pass to the strip executable command when linking against
Mercury static libraries.

--java-archive-command command
Specify the command used to produce Java archive (JAR) files.

—-—framework framework
Build and link against the specified framework. (Mac OS X only.)

-F directory
-—framework-directory directory
Append the specified directory to the framework search path. (Mac OS X only.)
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--sign-assembly keyfile
Sign the current assembly with the strong name contained in the specified key
file. (This option is only meaningful when generating library assemblies with
the C# back-end.)

-—cstack-reserve-size size
Set the total size of the C stack in virtual memory for executables. The stack
size is given in bytes. This option is only supported (and indeed only necessary)
on systems running Microsoft Windows.

9.13 Build system options

-m
--make Treat the non-option arguments to ‘mmc’ as files to make, rather than source
files. Build or rebuild the specified files if they do not exist or are not up-to-date.
(Note that this option also enables ‘~-use-subdirs’.)
-r
--rebuild
Same as ‘--make’, but always rebuild the target files even if they are up to date.
-k
--keep-going
With ‘--make’ keep going as far as possible even if an error is detected.
_j n

--jobs n  With ‘--make’, attempt to perform up to n jobs concurrently.

--track-flags
With ‘--make’, keep track of the options used when compiling each module. If
an option for a module is added or removed, ‘mmc --make’ will then know to
recompile the module even if the timestamp on the file itself has not changed.
Warning, verbosity and build system options are not tracked.

—--pre-link-command command
Specify a command to run before linking with ‘mmc --make’. This can be used
to compile C source files which rely on header files generated by the Mercury
compiler. The command will be passed the names of all of the source files in
the program or library, with the source file containing the main module given
first.

-—extra-init-command command
Specify a command to produce extra entries in the ‘.init’ file for a library.
The command will be passed the names of all of the source files in the program
or library, with the source file containing the main module given first.

3
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--install-prefix dir
Specify the directory under which to install Mercury libraries.

--install-command command
Specify the command to use to install the files in Mercury libraries. The given
command will be invoked as command source target to install each file in a
Mercury library. The default command is ‘cp’.

--no-detect-libgrades

--no-detect-stdlibgrades
Do not scan the installation directory to determine which standard library
grades are available.

--libgrade grade
Add grade to the list of compilation grades in which a library to be installed
should be built.

--no-libgrade
Clear the list of compilation grades in which a library to be installed should be
built. The main use of this is to avoid building and installing the default set of
grades.

--libgrades-include-component component

--libgrades—-include component
Remove grades that do not contain the specified component from the set of
library grades to be installed. (This option does not work with Mmake, only
‘mmc --make’.)

--libgrades-exclude-component component

--libgrades—-exclude component
Remove grades that contain the specified component from the set of library
grades to be installed. (This option works only with only ‘mmc --make’; it does
not work with Mmake.)

--lib-linkage {shared,static}
Specify whether libraries should be installed for shared or static linking. This
option can be specified multiple times. By default, libraries will be installed for
both shared and static linking.

--flags file

--flags—-file file
Take options from the specified file, and handle them as if they were specified
on the command line.
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--options-file file
Add file to the list of options files to be processed. If file is ‘=’, an options file
will be read from the standard input. By default the file ‘Mercury.options’ in
the current directory will be read. See Chapter 5 [Using Mmake|, page 5 for a
description of the syntax of options files.

-—config-file file
Read the Mercury compiler’s configuration information from file. If the
‘-—config-file’ option is not set, a default configuration will be used, unless
‘-—no-mercury-stdlib-dir’ is passed to ‘mmc’. The configuration file is just
an options file (see Chapter 5 [Using Mmake], page 5).

--options-search-directory dir
Add dir to the list of directories to be searched for options files.

--mercury-configuration-directory dir
—--mercury-config-dir dir
Search dir for Mercury system’s configuration files.

-1 dir

-—-search-directory dir
Append dir to the list of directories to be searched for ‘.int*’ and
‘.module_dep’ files.

--intermod-directory dir
Append dir to the list of directories to be searched for ‘.opt’ and ‘.trans_opt’
files.

--no-use-search-directories-for-intermod
Do not add the arguments of ‘--search-directory’ options to the list
of directories to be searched for ‘.opt’ files; use only the arguments of
‘-—intermod-directory’ options.

--no-libgrade-install-check
Do not check that libraries have been installed before attempting to use them.
(This option is only meaningful with ‘mmc --make’.)

--use-subdirs
Create intermediate files in a ‘Mercury’ subdirectory, rather than in the current
directory.

--use-grade-subdirs
Generate intermediate files in a ‘Mercury’ subdirectory, laid out so that multiple
grades can be built simultaneously. Executables and libraries will be symlinked
or copied into the current directory. ‘--use-grade-subdirs’ does not work
with Mmake (it does work with ‘mmc --make’).
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--error—-files-in-subdir
Make ‘mmc --make’ to put ‘.err’ files (containing compiler error messages)
into the ‘Mercury’ subdirectory, rather than into the current directory.
‘-—error-files-in-subdir’ has no effect on Mmake.

--order-make-by-timestamp
Make ‘mmc --make’ compile more recently modified source files first.

—--show-make-times
Report run times for commands executed by ‘mmc --make’.

-—extra-library-header file

-—extra-lib-header file
Install the specified C header file along with a Mercury library. (This option is
only supported by ‘mmc --make’)

-—-restricted-command-line
Enable this option if your shell doesn’t support long command lines. This
option uses temporary files to pass arguments to sub-commands. (This option
is only supported by ‘mmc --make’)

-—env-type type
Specify the environment type in which the compiler and generated programs
will be invoked. The environment type controls how the compiler and generated
programs interact with the shell and other system tools. The type should be one
of ‘posix’, ‘cygwin’, ‘msys’, or ‘windows’. This option is equivalent to setting
all of ‘~~host-env-type’, ‘--system-env-type’ and ‘--target-env-type’ to
type.

--host-env-type type
Specify the environment type in which the compiler will be invoked. (See above
for a list of supported environment types.)

-—system-env-type type
Specify the environment type in which external programs invoked by the
compiler will run. If not specified, this defaults to the value given by
‘-~host-env-type’.

--target-env-type type
Specify the environment type in which generated programs will be invoked.
(See above for a list of supported environment types.)
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9.14 Miscellaneous options

-7
-h
--help Print a usage message.

-—filenames-from-stdin
Read then compile a newline terminated module name or file name from the
standard input. Repeat this until EOF is reached. (This allows a program or
user to interactively compile several modules without the overhead of process
creation for each one.)

-—typecheck-ambiguity-warn-limit n
Set the number of type assignments required to generate a warning about highly
ambiguous overloading to n.

--typecheck-ambiguity-error-limit n
Set the number of type assignments required to generate an error excessively
ambiguous overloading to n. If this limit is reached, the typechecker will not
process the predicate or function any further.

--control-granularity
Don’t try to generate more parallelism than the machine can handle, which
may be specified at runtime or detected automatically. (see the ‘~P’ option in
the MERCURY_OPTIONS environment variable.)

--distance-granularity distance_value
Control the granularity of parallel execution using the specified distance value.

--implicit-parallelism
Introduce parallel conjunctions where it could be worthwhile (implicit
parallelism) wusing deep profiling feedback information generated by
mdprof_create_feedback. The profiling feedback file can be specified using the
‘--feedback-file’ option.

--feedback-file file
Use the specified profiling feedback file which may currently only be processed
for automatic parallelism.

10 Environment variables

The various components of the Mercury compilation environment will use the following
environment variables if they are set. There should be little need to use most of these,
because the default values will generally work fine.
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10.1 Environment variables affecting the Mercury compiler

MERCURY_COMPILER
Filename of the Mercury compiler.

MERCURY_MKINIT
Filename of the program to create the ‘*_init.c’ file.

MERCURY_DEFAULT_GRADE
The default grade to use if no ‘--grade’ option is specified.

MERCURY_STDLIB_DIR
The directory containing the installed Mercury standard library.
‘-—mercury-stdlib-dir’ options passed to the ‘mmc’, ‘ml’, ‘mgnuc’ and
‘c2init’ scripts override the setting of the MERCURY_STDLIB_DIR environment
variable.

MERCURY_COLOR_SCHEME
The specification of the map from color roles to color shades that the Mercury
compiler should use in diagnostics. For the details of the syntax, semantics, and
effects of such specifications, please see Section 11.3 [Color schemes|, page 147.

MERCURY_ENABLE_COLOR
This environment variable should contain either ‘always’ or ‘1’ to enable the
use of color in diagnostics by the Mercury compiler, or either ‘never’ or ‘0’
to disable it. Note however that this effect can be overruled by command line
options; for the details, please see Section 11.4 [Enabling the use of color],
page 149.

NO_COLOR This environment variable being set to any nonempty string will disable the use
of color in diagnostics by the Mercury compiler. Note however that this effect
can be overruled by command line options and by the ‘MERCURY_ENABLE_COLOR’
environment variable; for the details, please see Section 11.4 [Enabling the use
of color], page 149.

10.2 Environment variables affecting the Mercury debugger

MERCURY_DEBUGGER_INIT
Name of a file that contains startup commands for the Mercury debugger. This
file should contain documentation for the debugger command set, and possibly
a set of default aliases.
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10.3 Environment variables affecting the Mercury runtime
system

MERCURY_OPTIONS

A list of options for the Mercury runtime system, which gets linked into ev-
ery Mercury program. The options given in this environment variable apply
to every program; the options given in an environment variable whose name is
of the form MERCURY_OPTIONS_progname apply only to programs named prog-
name. Note that progname does not include the ‘.exe’ extension on those
systems (e.g. Windows) that use it. Options may also be set for a particu-
lar executable at compile time by passing ‘--runtime-flags’ options to the
invocations of ‘m1’ and ‘c2init’ which create that executable. These options
are processed first, followed by those in MERCURY_OPTIONS, with the options in
MERCURY_OPTIONS_progname being processed last.

The Mercury runtime system accepts the following options.

-C size Tells the runtime system to optimize the locations of the starts of
the various data areas for a primary data cache of size kilobytes.
The optimization consists of arranging the starts of the areas to
differ as much as possible modulo this size.

-D debugger
Enables execution tracing of the program, via the internal de-
bugger if debugger is ‘i’ and via the external debugger if debug-
ger is ‘e’. (The mdb script works by including ‘-Di’ in MER-
CURY_OPTIONS.) The external debugger is not yet available.

-p Disables profiling. This only has an effect if the executable was
built in a profiling grade.

-P num Tells the runtime system to create num threads for executing Mer-
cury code if the program was built in a parallel low-level C grade.
The Mercury runtime attempts to automatically determine this
value if support is available from the operating system. If it cannot
or support is unavailable it defaults to ‘1’.

--max-engines num
Tells the runtime system to allow a maximum of num POSIX
threads, each with its own Mercury engine. This only affects pro-
grams in low-level C parallel grades.

--max-contexts-per-thread num
Tells the runtime system to create at most num contexts per POSIX
thread for parallel execution. Each context created requires a set
of stacks, setting this value too high can consume excess memory.
This only has an effect if the executable was built in a low-level C
parallel grade.
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--thread-pinning
Request that the runtime system attempts to pin Mercury engines
(POSIX threads) to CPU cores/hardware threads. This only has
an effect if the executable was built in a parallel low-level C grade.
This is disabled by default but may be enabled by default in the
future.

-T time-method
If the executable was compiled in a grade that includes time profil-
ing, this option specifies what time is counted in the profile. time-
method must have one of the following values:

r’ Profile real (elapsed) time (using ITIMER_REAL).

p’ Profile wuser time plus system time (using
ITIMER_PROF). This is the default.

‘v’ Profile user time (using ITIMER_VIRTUAL).

Currently, only the ‘~Tr’ option works on Cygwin; on that platform
it is the default.

--heap-size size
Sets the size of the heap to size kilobytes.

--heap-size-kwords size
Sets the size of the heap to size kilobytes multiplied by the word
size in bytes.

--detstack-size size
Sets the size of the det stack to size kilobytes.

-—detstack-size-kwords size
Sets the size of the det stack to size kilobytes multiplied by the
word size in bytes.

--nondetstack-size size
Sets the size of the nondet stack to size kilobytes.

--nondetstack-size-kwords size
Sets the size of the nondet stack to size kilobytes multiplied by the
word size in bytes.
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-—small-detstack-size size
Sets the size of the det stack used for executing parallel conjunc-
tions to size kilobytes. The regular det stack size must be equal or
greater.

--small-detstack-size-kwords size
Sets the size of the det stack used for executing parallel conjunctions
to size kilobytes multiplied by the word size in bytes. The regular
det stack size must be equal or greater.

--small-nondetstack-size size
Sets the size of the nondet stack for executing parallel computations
to size kilobytes. The regular nondet stack size must be equal or
greater.

--small-nondetstack-size-kwords size
Sets the size of the nondet stack for executing parallel computations
to size kilobytes multiplied by the word size in bytes. The regular
nondet stack size must be equal or greater.

--solutions-heap-size size
Sets the size of the solutions heap to size kilobytes.

--solutions-heap-size-kwords size
Sets the size of the solutions heap to size kilobytes multiplied by
the word size in bytes.

--trail-segment-size size
Sets the size of each trail segment to be size kilobytes. This option
is ignored in grades that do not use a trail.

--trail-segment-size-kwords size
Set the size of each trail segment to be size kilobytes multiplied by
the words size in bytes. This option is ignored in grades that do
not use trail.

--genstack-size size
Sets the size of the generator stack to size kilobytes.

--genstack-size-kwords size
Sets the size of the generator stack to size kilobytes multiplied by
the word size in bytes.

--cutstack-size size
Sets the size of the cut stack to size kilobytes.
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-—cutstack-size-kwords size
Sets the size of the cut stack to size kilobytes multiplied by the
word size in bytes.

--pnegstack-size size
Sets the size of the pneg stack to size kilobytes.

--pnegstack-size-kwords size
Sets the size of the pneg stack to size kilobytes multiplied by the
word size in bytes.

-i filename

--mdb-in filename
Read debugger input from the file or device specified by filename,
rather than from standard input.

-o filename

--mdb-out filename
Print debugger output to the file or device specified by filename,
rather than to standard output.

-e filename

--mdb-err filename
Print debugger error messages to the file or device specified by
filename, rather than to standard error.

-m filename

--mdb-tty filename
Redirect all three debugger 1/0O streams — input, output, and error
messages — to the file or device specified by filename.

—--debug-threads
Output information to the standard error stream about the locking
and unlocking occurring in each module which has been compiled
with the C macro symbol ‘MR_DEBUG_THREADS’ defined.

--tabling-statistics
Prints statistics about tabling when the program terminates.

--mem-usage-report prefix
Print a report about the memory usage of the program when the
program terminates. The report is printed to a new file named
‘.mem_usage_reportN’ for the lowest value of N (up to 99) which
doesn’t overwrite an existing file. Note that this capability is not
supported on all operating systems.
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—-—trace-count

When the program terminates, generate a trace counts file listing
all the debugger events the program executed, if the program actu-
ally executed any debugger events. If MERCURY_OPTIONS includes
the ‘--trace-count-output-file filename’ option, then the
trace counts are put into the file filename. If MERCURY_OPTIONS
includes the ‘--trace-count-summary-file basename’ option,
then the trace counts are put either in the file basename (if it does
not exist), or in basename.N for the lowest value of the integer N
which doesn’t overwrite an existing file. (There is a limit on the
value of N; see the option ‘--trace-count-summary-max’ below.)
If neither option is specified, then the output will be written to a
file with the prefix ‘.mercury_trace_counts’ and a unique suffix.
Specifying both options is an error.

--coverage-test
Act as the ‘--trace-count’ option, except include all debugger
events in the output, even the ones that were not executed.

--trace-count-if-exec prog
Act as the ‘--trace-count’ option, but only if the executable is
named prog (excluding any ‘.exe’ extension on Windows). This
is to allow the collection of trace count information from only one
Mercury program even if several Mercury programs are executed
with the same setting of MERCURY_OPTIONS.

--coverage-test-if-exec prog
Act as the ‘~-coverage-test’ option, but only if the executable is
named prog (excluding any ‘.exe’ extension on Windows). This is
to allow the collection of coverage test information from only one
Mercury program even if several Mercury programs are executed
with the same setting of MERCURY_OPTIONS.

-—trace-count-output-file filename
Documented alongside the ‘--trace-count’ option.

-—trace-count-summary-file basename
Documented alongside the ‘~-trace-count’ option.

-—trace-count-summary-max N
If MERCURY_OPTIONS includes both the ‘--trace-count option’
(or one of the other options that imply ‘--trace-count’) and
the ‘--trace-count-summary-file basename’ option, then the
generated program will put the generated trace counts either in
basename (if it does not exist), or in basename.N for the lowest
value of the integer N which doesn’t overwrite an existing file.
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The ‘--trace-count-summary-max’ option specifies the maximum
value of this N. When this maximum is reached, the program
will invoke the ‘mtc_union’ program to summarize basename,
basename.1, ... basename.N into a single file basename, and
delete the rest. By imposing a limit on the total number (and
hence indirectly on the total size) of these trace count files, this
mechanism allows the gathering of trace count information from a
large number of program runs. The default maximum value of N
is 20.

--deep-std-name
This option, which is meaningful only in deep profiling grades,
asks deep profiling data to be stored in files named Deep.data and
Deep.procrep. The default is that the runtime system puts such
data into files whose names follow the pattern progname _on_date _
at_time.data and progname_on_date_at_time.procrep respec-
tively.

--boehm-gc-free-space-divisor N
This option sets the value of the free space divisor in the Boehm
garbage collector to N. It is meaningful only when using the Boehm
garbage collector. The default value is 3. Increasing its value will
reduce heap space but increase collection time. See the Boehm GC
documentation for details.

--boehm-gc-calc-time
This option enables code in the Boehm garbage collector to calcu-
late the time spent doing garbage collection so far. Its only effect
is to enable the ‘report_stats’ predicate in the ‘benchmarking’
module of the standard library to report this information.

--fp-rounding-mode mode
Set the rounding mode for floating point operations to mode.
Recognised modes are ‘downward’, ‘upward’, ‘to_nearest’ and
‘toward_zero’. Exactly what modes are available and even if it is
possible to set the rounding mode is system dependent.

11 Diagnostic output

Mercury’s strong type-, mode-, and determinism systems impose strict requirements on
Mercury programs. These systems allow the compiler to guarantee that it will catch many
of the most frequent kinds of errors that programmers tend to make. This improves not
just program reliability, but also programmer productivity, since finding and fixing a bug
is much easier if the compiler hands you the location of at least one part of the program
involved in the error on a silver platter. However, it also means that a Mercury programmer
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will typically have to see and act upon more error and warning messages (diagnostics) than
programmers who write code in less strict languages. This is why the compiler tries hard
to make each diagnostic as usable, informative and clear as it can.

11.1 Verbose vs nonverbose messages

Making a diagnostic sufficiently informative for programmers new to Mercury does in some
cases require including a significant amount of explanation. On the other hand, such expla-
nations are not needed by programmers who are already familiar with the issues involved,
and indeed for them, such explanations are usually nothing more than clutter. This is why
the Mercury compiler splits such error messages into two parts. The first part just reports
the facts specific to the error being reported. The second part, which is intended specifically
to help programmers new to Mercury, is a generic explanation of the background needed
to understand the first part. The first part is always printed, while the second part is
printed only if the programmer asks for verbose error messages. This can be done using
the ‘--verbose-error-messages’ compiler option. which can be abbreviated to just ‘-E’.
If a compiler invocation prints any diagnostics that have a verbose component that is not
printed because the user has not asked for it, the compiler will print the reminder about
this fact: ‘For more information, recompile with ‘-E’.’

11.2 Ordering diagnostics

Normally, the compiler prints all the diagnostics for a module together, in ascending order of
context. (With the exception of Mercury modules whose source files use the ‘source_file’
pragma and/or the ‘#line’ directive, this means that messages for lower numbered lines
are printed before messages for higher numbered lines.)

Sometimes, the output will look unsorted without actually being unsorted. This can
happen because some diagnostics report an inconsistency between two or more parts of
the program. Such diagnostics will contain one component for each such part, and each
component’s text about that part will have before it the context (filename and line number)
of that part. The sorting of diagnostics operates on just the first context in each diagnostic;
any later contexts are ignored.

However, there are some situations in which the compiler does indeed intentionally de-
viate from the above default.

One such situation occurs when the programmer specifies the ‘-v’ option, which asks

for verbose compiler output. In such cases, the compiler will print progress messages that
specify which phase of compilation the compiler is about to start, and if that phase can find
errors in the program, it will print the diagnostics for the errors it finds before it goes on
to the next phase.

The programmer can ask for the usual ordering of diagnostics to be reversed by giving
the ‘--reverse-error-order’ option. This options makes things easier for programmers
when they want to work on the last errors in a file first. This can be a good idea for
example if the module you are working on (e.g. by rearranging a data structure) has its
primitive operations towards the end of the module, and you think the fixes needed to these
primitives will require changes to their signatures. In such cases, fixing the lowest level
primitives first allows you to fix the originally reported errors for higher level operations
at the same time as you update their calls to the lower level primitives, and reversing the
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order of the diagnostics allows you to get to those errors for the tail end of the file without
having to wade through the errors for the code above.

The compiler also supports a more general mechanism for allowing programmers to
focus on fixing errors in a particular part of the program first. This mechanism is the
‘--limit-error-contexts’ compiler option. This option has as its argument a comma-
separated list of line number ranges. It tells the compiler to print only diagnostics that
contain one or more contexts that fall into one of these ranges. (A printed diagnostic may
contain some contexts that fall outside all these ranges, as long as it has at least one context
that falls inside.) If a compiler invocation has this option specified but all the diagnostics it
would print in its absence are held back by this option, it will print a reminder about this
fact.

11.3 Color schemes

The compiler tries to make diagnostics usable more quickly by using color to direct people’s
attention to the most relevant parts of diagnostics.

The compiler uses colors for the following five purposes. We must explain these first,
before we can explain color schemes, which are simple mappings from purposes (which we
also call color roles) to actual shades of color.

‘subject’ The compiler uses the ‘subject’ color for the entity that the diagnostic is about.
Examples of such entities include a specific variable, a specific type, or a specific
predicate.

‘incorrect’
The compiler uses the ‘incorrect’ color to emphasize either the description of
what is wrong with the subject entity, or the property of the subject entity that
is wrong.

‘correct’ The compiler uses the ‘correct’ color to emphasize the expected property of the
subject entity, where that differs from its actual property. For example, when
a call passes an argument of the wrong type, it will show the argument’s actual
type using the ‘incorrect’ color, and the expected type using the ‘correct’
color. It does this because the type is far more likely to be wrong in the call than
in the declaration of the called predicate or function. (Of course, situations do
sometimes occur in which it is the type in the declaration that is wrong.)

‘inconsistent’
The compiler uses the ‘inconsistent’ color when it knows that two parts of
the code are inconsistent with each other, but neither part is a priori more likely
to be wrong than the other. For example, when unifying two values of different
types, the compiler uses this color when printing the type of both values; the
compiler knows that in all likelyhood, one type is correct and one is incorrect,
but it does not know which is which.

‘hint’ The compiler uses the ‘hint’ color when it reports observations that may or may
not explain the root of the problem it reports, but which are worth looking into.
For example, when it reports that two actual arguments of a call have types
that do not match the types of the corresponding arguments in the declaration
of the callee, it may give a hint that each of those actual arguments do in fact
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each match the type of an argument in the callee, just not the ones in the right
positions, implying that the actual problem may be passing the right arguments
in the wrong order.

Programmers can specify the colors they want the compiler to use for each purpose
either by setting the environment variable ‘MERCURY_COLOR_SCHEME’ to a string (let’s call
it ColorScheme), or by specifying the compiler option ‘--color-scheme ColorScheme’. In
both cases, ColorScheme can be either

e the name of a color scheme built into the Mercury compiler, or

e the assignment of specific colors for the roles that colors can play in its diagnostics.

The compiler currently has the following six builtin color schemes:
‘darkmode’

e ‘darkmode256’

e ‘darkmodel6’

e ‘lightmode’

e ‘lightmode256’

e ‘lightmodel6’

The “mode” in each name is optional, meaning that e.g. ‘dark’ names the same color
)
scheme as ‘darkmode’.

The schemes whose names contain “dark” are intended to be used on terminal screens
with dark backgrounds (including black backgrounds). The schemes whose names contain
“light” are intended to be used on terminal screens with light backgrounds (including white
backgrounds).

e The schemes ending without numbers use 24-bit RGB colors, which your terminal or
terminal emulator probably supports.

e The schemes ending in “256” use the colors listed in the 8-bit color section under
‘https://en.wikipedia.org/wiki/ANSI_escape_code#Colors’, which your terminal
or terminal emulator is virtually certain to support.

e The schemes ending in “16” use the first 16 color slots listed in that 8-bit color table.
These 16 color slots differ from the other 240 colors in that table in that most terminal
emulators allow users to select the actual colors that go into those slots. This means
that output that uses color schemes ending in “16” may look different on terminals
with different color palette settings, and will match the intended look only with the
default color palette. (The builtin color schemes ending in “256” avoid using these
reassignable color slots.)

The other way to specify a color scheme is to directly specify the colors you want the com-
piler to use using a string such as ‘specified@subject=87:correct=40:incorrect=203:inconsistent=171:k
The rules for this form of color scheme specification are as follows.
e The string must start with the string ‘specified@’.
e The rest of the string must not contain any white space, but must consist of a colon-
separated list of one or more color assignments.
e Fach color assignment must have the form ‘Role=Color’, which assigns the given color
to the given role.
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e Fach Role must be one of the five strings ‘subject’, ‘correct’, ‘incorrect’,
‘inconsistent’, and ‘hint’.
e Fach Color must have of the following two forms.

e The first form is a decimal integer in the range 0 to 255 (both in-
clusive).  This selects a slot in the table in the 8-bit color section of
‘https://en.wikipedia.org/wiki/ANSI_escape_code#Colors’.  The caveat
mentioned above about colors 0 to 15 apply here as well: in most terminal
emulators, these slots are reassignable, so specifying one of these slots may or
may not get you to the color in that slot in that table. The other 240 slots are
not usually reassignable.

e The second form is a seven-character string where the first character is ‘#’, and
each of the following six characters is a hexadecimal digit. Each string ‘#RRGGBB’
specifies a 24-bit RGB color, with ‘RR’ specifying its red component, ‘GG’ specifying
its green component, and ‘BB’ specifying its blue component.

e If the color scheme has no color assignment for a given role, then the compiler will not
use color for that role.

e If the color scheme has two or more color assignments for the same role, only the last
one counts; the others are ignored.

As mentioned above, programmers can specify color schemes using the environment vari-
able ‘MERCURY_COLOR_SCHEME’ and by using the ‘~-color-scheme’ compiler option. These
can specify different schemes. The rules the compiler uses to choose the color scheme that
it will use are as follows.

1. If the command line contains a ‘--color-scheme’ option, the compiler will use its color
scheme. (If the command line contains more than one ‘--color-scheme’ option, the
compiler will use the last one.)

2. If the command line contains no ‘--=color-scheme’ option, but the environment vari-
able ‘MERCURY_COLOR_SCHEME’ exists and contains a nonempty string, then the compiler
will use its color scheme.

3. If the command line contains no ‘--color-scheme’ option, and the environment vari-
able ‘MERCURY_COLOR_SCHEME’ does not exist or contains an empty string, but the files
named in any ‘--options-file’ compiler options (or, in the absence of such options,
the ‘Mercury.options’ file), include a ‘--color-scheme’ option among the module-
specific ‘MCFLAGS’ for the current module, then the compiler will use its color scheme.
(If the options file(s) contain more than one ‘--color-scheme’ option, the compiler
will use the last one.)

4. In the absence of a ‘--color-scheme’ option on the command line, in the
‘MERCURY_COLOR_SCHEME’ environment variable and in the options files, the compiler
will use its default color scheme, which is ‘1ight16’. This scheme works reasonably
well even on dark backgrounds, even though (as its name indicates) it was designed
for light backgrounds. (This assumes that the color slots it uses hold either their
standard colors, or something reasonably close to them.)

11.4 Enabling the use of color

The Mercury compiler uses two separate mechanisms
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e to specify what colors to use for each role, if the use of color in diagnostics is enabled,
and

e to decide whether the use of color in diagnostics is enabled.

This arrangement allow programmers to turn off the use of color temporarily without
having to specify the color scheme again in full when they want to turn it back on again.

As with color schemes, programmers can control whether color is enabled in diagnostics
using either a compiler option, or by using environment variables.

The compiler option is a boolean option, which, like other boolean options, has two forms:
a positive form ‘--color-diagnostics’, which enables the use of color, and a negative form
‘-—no-color-diagnostics’, which disables its use.

There are two environment variables that the Mercury compiler consults in its deci-
sion: ‘MERCURY_ENABLE_COLOR’, and ‘NO_COLOR’. As their names show, the first is specific
to Mercury, while the second is not; it is in fact a defacto standard for disabling color.
‘https://no-color.org’.

The rules the compiler uses to decide whether the use of color in diagnostics is enabled
are as follows.

1. If the command line contains a ‘--color-diagnostics’ option, in either its positive

or negative form, then the compiler will obey it.

2. If the command line contains no ‘--color-diagnostics’ option, but the environment
variable ‘MERCURY_ENABLE_COLOR’ exists and contains either ‘never’ or ‘always’, then
the compiler will obey it. The compiler also allows ‘0’ as a synonym for ‘never’, and
‘1’ as a synonym for ‘always’.

3. If the command line contains no ‘--color-diagnostics’ option, and the environment
variable ‘MERCURY_ENABLE_COLOR’ either does not exist, or contains a string other than
the four listed above, but the environment variable ‘NO_COLOR’ exists and contains a
nonempty string, then the compiler will obey it by disabling the use of color.

4. If the command line contains no ‘--color-diagnostics’ option and neither environ-
ment variable has a value that directs the compiler to obey it, but the files named
in any ‘--options-file’ compiler options, (or, in the absence of such options, the
‘Mercury.options’ file), include a ‘--color-diagnostics’ option, in either its pos-
itive or negative form, among the module-specific ‘MCFLAGS’ for the current module,
then the compiler will obey it.

5. If the preconditions of all four of the above rules are false, i.e. none of them decide
the outcome, then the compiler will fall back to its default. The usual default decision
is to enable the use of color, though this can be overridden for a given installation of
Mercury.

12 Using a different C compiler

The Mercury compiler takes special advantage of certain extensions provided by GNU C
to generate much more efficient code. We therefore recommend that you use GNU C for
compiling Mercury programs. However, if for some reason you wish to use another compiler,
it is possible to do so. Here is what you need to do.
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e Create a new configuration for the Mercury system using the ‘mercury_config’ script,
specifying the different C compiler, e.g. ‘mercury_config --output-prefix=/usr/local/mercury-cc
--with-cc=cc’.

e Add the ‘bin’ directory of the new configuration to the beginning of your PATH.

e You must use a grade beginning with ‘none’ or ‘hlc’ (e.g. ‘hlc.gc’). You can specify
the grade in one of three ways: by setting the MERCURY_DEFAULT_GRADE environment
variable, by adding a line ‘GRADE=. ..’ to your ‘Mmake’ file, or by using the ‘--grade’
option to ‘mmc’. (You will also need to install those grades of the Mercury library, if
you have not already done so.)

e If your compiler is particularly strict in enforcing ANSI compliance, you may also need
to compile the Mercury code with ‘--no-static-ground-terms’.

13 Foreign language interface

The Mercury foreign language interfaces allows ‘pragma foreign_proc’ to specify multiple
implementations (in different foreign programming languages) for a procedure.

If the compiler generates code for a procedure using a back-end for which there are
multiple applicable foreign languages, it will choose the foreign language to use for each
procedure according to a builtin ordering.

If the language specified in a ‘foreign_proc’ is not available for a particular back-end,
it will be ignored.

If there are no suitable ‘foreign_proc’ clauses for a particular procedure but there are
Mercury clauses, they will be used instead.

‘c’ This is the default foreign language on all back-ends which compile to C. Only
available on back-ends that compile to C.

‘c#’ This is the only foreign language for back-ends which compile to C#.

‘Java’ This is the only foreign language for back-ends which compile to Java.

14 Stand-alone interfaces

Programs written in a language other than Mercury should not make calls to foreign ex-
ported Mercury procedures unless the Mercury runtime has been initialised. (In the case
where the Mercury runtime has not been initialised, the behaviour of these calls is unde-
fined.) Such programs must also ensure that any module specific initialisation is performed
before calling foreign exported procedures in Mercury modules. Likewise, module specific
finalisation may need to be performed after all calls to Mercury procedures have been made.

A stand-alone interface provides a mechanism by which non-Mercury programs may
initialise (and shut down) the Mercury runtime plus a specified set of Mercury libraries.

A stand-alone interface is created by invoking the compiler with the
‘-—generate-standalone-interface’ option. @ The set of Mercury libraries to be
included in the stand-alone interface is given via one of the usual mechanisms for specifying
what libraries to link against, e.g. the ‘--ml’ and ‘--mld’ options. (see Chapter 6
[Libraries], page 11). The Mercury standard library is always included in this set.
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In C grades, the ‘--generate-standalone-interface’ option causes the compiler to
generate an object file that should be linked into the executable. This object file contains
two functions: mercury_init() and mercury_terminate(). The compiler also generates
a C header file that contains the prototypes of these functions. (This header file may be
included in C++ programs.) The roles of the two functions are described below.

e mercury_init ()
Prototype:

void mercury_init(int argc, char **argv, void *stackbottom);

Initialise the Mercury runtime, standard library and any other Mercury libraries
that were specified when the stand-alone interface was generated. argc and
argv are the argument count and argument vector, as would be passed to the
function main() in a C program. stackbottom is the address of the base of
the stack. In grades that use conservative garbage collection this is used to tell
the collector where to begin tracing. This function must be called before any
Mercury procedures and must only be called once. It is recommended that the
value of stackbottom be set by passing the address of a local variable in the
main() function of a program, for example:

int main(int argc, char **argv) {
void *dummy;
mercury_init(argc, argv, &dummy) ;

3

Note that the address of the stack base should be word aligned as some garbage
collectors rely upon this. (This is why the type of the dummy variable in
the above example is void *.) If the value of stackbottom is NULL, then the
collector will attempt to determine the address of the base of the stack itself.
Note that modifying the argument vector, argv, after the Mercury runtime has
been initialised will result in undefined behaviour since the runtime maintains
a reference into argv.

e mercury_terminate ()
Prototype:

int mercury_terminate(void);

Shut down the Mercury runtime. The value returned by this function is Mer-
cury’s exit status (as set by the predicate ‘io.set_exit_status/3’). This
function will also invoke any finalisers contained in the set of libraries for which
the stand-alone interface was generated.

The basename of the object and header file are provided as the argument of
‘--generate-standalone-interface’ option.

Stand-alone interfaces are not required if the target language is Java or C#. For those
target languages the Mercury runtime will be automatically initialised when the classes or
library assemblies containing code generated by the Mercury compiler are loaded.

For an example of using a stand-alone interface see the ‘samples/c_interface/standalone_c’
directory in the Mercury distribution.
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